Chick-fil-A Restaurant
 Planned Development Amendment PLNSUB2010-00112 1206 E 2100 South
 Public Hearing: July 14, 2010

Planning Division Department of Community \& Economic Development

Applicant:

Deborah Kerr, Kerr Project Services, INC.

Staff:

Michael Maloy, (801) 535-7118 michael.maloy@slcgov.com
Tax ID:
16-20-229-050-0000

Current Zone:

CSHBD1 Sugar House Business District

Lot Size:

$0.64 \pm$ acres ($\approx 27,858 \mathrm{ft}^{2}$)

Master Plan Designation:

Business District Mixed Use - Town Center Scale Sugar
House Master Plan (published October 2005)
Council District:
District 7 - Søren D. Simonsen

Community Council:

Sugar House Community Council - Philip Carlson, Chair

Current Use:

Restaurant

Applicable Land Use Regulations:

- Section 21A.26.060 CSHBD Sugar House Business District
- Chapter 21A. 55 Planned Development

Notification:

- Notice mailed July 1, 2010
- Sign posted July 1, 2010
- Posted to Planning Division and Utah State Public Meeting websites July 1, 2010

Attachments:

A. Development Plans
B. Letter to Planning Commission
C. Summary of CSHBD1 Compliance
D. Landscape Plan
E. Architectural Elevations \& Rendering
F. Citizen Comments
G. Department Comments
H. Traffic Impact Study
I. Sugar House Business District Design Guideline Handbook
J. Summary of Sugar House Design Compliance

Request

The applicant, Deborah Kerr, requests preliminary approval to amend a commercial planned development located at 1206 E 2100 South. The purpose for the amendment is to demolish an existing restaurant, Lone Star Steakhouse, to construct a new restaurant, Chick-filA, with drive through service.

Recommendation

Staff recommends the Planning Commission find Petition PLNSUB2010-00112 for a planned development amendment to demolish an existing restaurant and construct a new restaurant with drive through service to be a "major modification not in substantial compliance with the approved development plan. Furthermore, based upon findings contained within the staff report, staff recommends approval subject to compliance with the following conditions:

1. The proposed development is subject to compliance with all prior Planning Commission conditions of approval from May 15, 1997.
2. The proposed development is subject to compliance with all applicable Department Comments and City regulations.
3. Applicant shall re-orient principal building façade and entrance toward 2100 South in compliance with City policies.
4. Applicant shall relocate drive-through lane to the rear or side of the principal building, and shall not be located between the principal building and 2100 South.
5. Applicant shall install and maintain a sufficient layer of organic mulch within all plant beds to reduce heat and improve plant nutrition.
6. Where possible, additional accent lighting of architectural and landscape features is encouraged.
A. Property owner shall actively participate in the "Idle Free Utah" campaign and promote its message to employees and customers.

Vicinity Map

Background

Project Description

The applicant, Deborah Kerr, requests approval to amend a commercial planned development located at 1206 E 2100 South. The purpose for the amendment is to demolish an existing restaurant, Lone Star Steakhouse, to construct a new restaurant, Chick-fil-A, with drive through service (see Attachment A - Development Plans). Although the project is located within a planned development, the developer intends to comply with all applicable City Codes (see Attachment B - Letter to Planning Commission and Attachment C - Summary of CSHBD1 Compliance).

The existing planned development, which includes the Homestead Studio Suites located at 1220 E 2100 South, was approved by the Planning Commission on May 15, 1997, subject to the following conditions:

1. Establishment of cross over easements for public pedestrian access on pedestrian corridors as approved through Conditional Use 410-247;
2. Establishment of cross over easements for vehicle access to Lot 3 for the purposes of property management and maintenance of Parley's Creek Open Space Corridor, emergency access and flood control maintenance by City, County, or designated private firms for individuals in the performance of work for the City or County;
3. That the final landscape plans within the development as a whole maintain an appropriate level of landscaping;
4. That pedestrian walks location and materials are appropriate;
5. That building materials and design are appropriate for Sugar House Business District and relates to pedestrian scale;
6. That Lot 4 be made available to Salt Lake City through acquisition or other means for public space as part of the Parley's Creek Open Space Corridor; and
7. That final development plans including landscaping, hard surfacing, pedestrian corridors, building design materials and design relationships of site plan to adjacent developments be approved by the Planning Commission Design Review Committee.

For reference, the subject property is Lot 1 of the Homestead Village Subdivision. As previously required by the Planning Commission, all existing "cross over easements for public pedestrian access on pedestrian corridors" and "cross over easements for vehicle access" will be maintained within the proposed development.

The subject property is zoned CSHBD1 Sugar House Business District and surrounded by commercial uses. The proposed restaurant and drive through are permitted uses in the CSHBD1 District. The proposal consists of one principal building that contains approximately 4,245 square feet, one accessory structure for storage of equipment and a dumpster, and one parking lot with approximately 22 parking spaces (see Attachment D Landscape Plan).

The proposed restaurant is adjacent to 2100 South Street. The front façade contains two outdoor patios and a porte-cochere that covers a portion of a single drive-through lane, which wraps around the restaurant. However, the primary entrance into the building is on the east side, adjacent to the proposed parking lot (see Attachment E - Architectural Elevations \& Rendering).

Public Participation

Public Comments

Staff received three letters from citizens prior to publication of this staff report. Two of the letters urge the Planning Commission to deny the petition based on negative traffic impacts, public safety concerns, and
insufficient pedestrian orientation. One letter urges the Planning Commission to approve the petition based on the applicant's "desire to work with the community" (see Attachment F - Citizen Comments).

Community Council Comments

The applicant presented the planned development amendment to the Sugar House Community Council on May 5, 2010. During the meeting, several members of the Community Council expressed concerns regarding traffic impacts, public safety, and building orientation. As of publication of this staff report, staff had not received a written summary on the petition from the Sugar House Community Council.

City Department Comments

Comments were solicited from all applicable City Departments and Divisions on April 5, 2010. All respondents recommended approval subject to compliance with City regulations and policies (see Attachment G Department Comments).

Analysis and Findings

Whereas the petition includes demolition of an existing structure previously approved by the Planning Commission as the Homestead Village planned development, and construction of a new principal structure, Wilf Sommerkorn, Planning Director, determined the petition represents a "major modification" to the planned development. According to City Code 21A.55.160.C, the Planning Commission may determine whether or not the major modification "is in substantial conformity with the approved development plan." If not, the Planning Commission "shall review the request in accordance with the procedures set forth in the (Planned Development) section."

In the event that the Planning Commission determines the petition is a "major modification...not in substantial conformity with the approved development plan," staff has prepared the following analysis and findings based on applicable standards for planned developments.

City Code 21A.55.050: Standards for Planned Developments: The planning commission may approve, approve with conditions, or deny a planned development based upon written findings of fact according to each of the following standards. It is the responsibility of the applicant to provide written and graphic evidence demonstrating compliance with the following standards:
A. Planned Development Objectives: The planned development shall meet the purpose statement for a planned development and will achieve at least one of the objectives stated in said section;

Analysis: City Code 21A.55.010 provides the following purpose statement and objectives for planned developments:

A planned development is intended to encourage the efficient use of land and resources, promoting greater efficiency in public and utility services and encouraging innovation in the planning and building of all types of development. Further, a planned development implements the purpose statement of the zoning district in which the project is located, utilizing an alternative approach to the design of the property and related physical facilities. A planned development will result in a more enhanced product than would be achievable through strict application of land use regulations, while enabling the development to be compatible and congruous with adjacent and nearby land developments. Through the flexibility of the planned development regulations, the city seeks to achieve any of the following specific objectives:
A. Combination and coordination of architectural styles, building forms, building materials, and building relationships;
B. Preservation and enhancement of desirable site characteristics such as natural topography, vegetation and geologic features, and the prevention of soil erosion;
C. Preservation of buildings which are architecturally or historically significant or contribute to the character of the city;
D. Use of design, landscape, or architectural features to create a pleasing environment;
E. Inclusion of special development amenities that are in the interest of the general public;
F. Elimination of blighted structures or incompatible uses through redevelopment or rehabilitation;
G. Inclusion of affordable housing with market rate housing; or
H. Utilization of "green" building techniques in development.

Finding: Staff finds the petition "is intended to encourage the efficient use of land and resources" and generally utilizes "design, landscape, and architectural features to create a pleasing environment." The applicant also intends to utilize "green" building techniques in the development. However, because the petition is not strictly compliant with the Sugar House Business District Design Guideline Handbook (see page 9 for further analysis), staff does not find the "planned development (as proposed) will result in a more enhanced product than would be achievable through strict application of land use regulations, while enabling the development to be compatible and congruous with adjacent and nearby land developments."
B. Master Plan and Zoning Ordinance Compliance: The proposed planned development shall be:

1. Consistent with any adopted policy set forth in the citywide, community, and/or small area master plan and future land use map applicable to the site where the planned development will be located, and
2. Allowed by the zone where the planned development will be located or by another applicable provision of this title.

Analysis: The Sugar House Future Land Use Map identifies the property as Business District Mixed Use Town Center Scale, which is intended for "retail, commercial, and office uses with a broad mix of small and large tenants." Although the proposed land use is consistent with the future land use designation, and the proposal achieves many of the stated policies of the Sugar House Community Master Plan (SHCMP), staff questions compliance with the following policies:

- Honoring the historic scale and mass of buildings along 2100 South and 1100 East (italics added for emphasis, SHCMP, page 4);
- Incorporate pedestrian orientation and pedestrian amenities into development alternatives (italics added for emphasis, SHCMP, page 4);
- Require buildings to address the public-right-of-way with a pedestrian orientation, including a minimum percentage of non-reflective glass and entrances facing the street (italics added for emphasis, SHCMP, page 7);
- Reduce the number of opportunities where pedestrian and automobile routes intersect (italics added for emphasis, SHCMP, page 7);

Although the proposed building appears to reflect the historic scale of commercial architecture, it's massing and placement does not. Because of building design, setback, and a prominent drive-through, the development is arguably not "pedestrian oriented" but "auto oriented." This is further emphasized by the fact that the primary building entrance does not face 2100 South, which again is contrary to stated policy. Lastly, both pedestrian connections from 2100 South cross the proposed drive through lane, which design fails to achieve the stated policy.

As stated previously, the proposed use is allowed within the CSHBD1 Sugar House Business District, which the property is zoned.

Finding: The proposed use is consistent with the Sugar House Future Land Use Map and is allowed within the CSHBD1 District; however it does not achieve all of the applicable SHCMP policy statements.
C. Compatibility: The proposed planned development shall be compatible with the character of the site, adjacent properties, and existing development within the vicinity of the site where the use will be located. In determining compatibility, the planning commission shall consider:

1. Whether the street or other means of access to the site provide the necessary ingress/egress without materially degrading the service level on such street/access or any adjacent street/access;
2. Whether the planned development and its location will create unusual pedestrian or vehicle traffic patterns or volumes that would not be expected, based on:
a. Orientation of driveways and whether they direct traffic to major or local streets, and, if directed to local streets, the impact on the safety, purpose, and character of these streets;
b. Parking area locations and size, and whether parking plans are likely to encourage street side parking for the planned development which will adversely impact the reasonable use of adjacent property;
c. Hours of peak traffic to the proposed planned development and whether such traffic will unreasonably impair the use and enjoyment of adjacent property.
3. Whether the internal circulation system of the proposed planned development will be designed to mitigate adverse impacts on adjacent property from motorized, non-motorized, and pedestrian traffic;
4. Whether existing or proposed utility and public services will be adequate to support the proposed planned development at normal service levels and will be designed in a manner to avoid adverse impacts on adjacent land uses, public services, and utility resources;
5. Whether appropriate buffering or other mitigation measures, such as, but not limited to, landscaping, setbacks, building location, sound attenuation, odor control, will be provided to protect adjacent land uses from excessive light, noise, odor and visual impacts and other unusual disturbances from trash collection, deliveries, and mechanical equipment resulting from the proposed planned development; and
6. Whether the intensity, size, and scale of the proposed planned development is compatible with adjacent properties.

If a proposed conditional use will result in new construction or substantial remodeling of a commercial or mixed used development, the design of the premises where the use will be located shall conform to the conditional building and site design review standards set forth in chapter 21A. 59 of this title.

Analysis: Although not required by the Salt Lake City Transportation Division, the applicant provided a Traffic Impact Study (see Attachment H - Traffic Impact Study). Kevin Young, Transportation Planning Engineer, reviewed the report and found that the proposed street access, which is from an existing drive approach on 2100 South, and parking lot is sufficient for the development (see Attachment G - Department Comments).

With regard to public services, Justin Stoker, Engineer IV with Public Utilities Department, stated "no objection to the current proposal." With regard to "appropriate buffering" and compatibility with adjacent uses, the property is surrounded by existing commercial uses and the proposed use is similar to the existing use.

Finding: With respect to vehicle access, vehicle circulation, parking area, utility services, and buffering standards, staff finds the proposed planned development compatible with the character of the site, adjacent properties, and existing development within the vicinity of the site where the use will be located. Furthermore, the proposed use, restaurant with drive through, is a permitted use within the CSHBD1 District. However, because the proposal includes drive-through service, staff recommends the property owner actively participate in the "Idle Free Utah" campaign and promote its message to employees and customers.
D. Landscaping: Existing mature vegetation on a given parcel for development shall be maintained. Additional or new landscaping shall be appropriate for the scale of the development, and shall primarily consist of drought tolerant species;

Analysis: The applicant intends to maintain the existing landscape islands and streetscape where most of the mature vegetation is located. Landscaping located adjacent to the existing restaurant will be removed and replaced with primarily drought tolerant species. However, staff recommends installation of organic mulch rather than the proposed gravel mulch to reduce heat and improve plant nutrition.

Finding: The existing mature vegetation on the subject property shall be maintained and additional or new landscaping shall be appropriate for the scale of the development, and shall primarily consist of drought tolerant species.
E. Preservation: The proposed planned development shall preserve any historical, architectural, and environmental features of the property;

Analysis: As stated previously, the proposed planned development is to demolish an existing restaurant, which was permitted for construction on March 23, 1998. The existing building is not considered as historically or architecturally significant. With regard to environmental features, the property abuts an existing pedestrian path to the Hidden Hollow Nature Preserve, which access will not be restricted by the proposed development.

Finding: The proposed planned development will not impact any historical or architecturally significant structure, and will maintain access to the Hidden Hollow Nature Preserve.
F. Compliance with Other Applicable Regulations: The proposed planned development shall comply with any other applicable code or ordinance requirement.

Analysis: The subject property is located within the CSHBD1 District. As such, the proposed development is subject to compliance with additional regulations listed below.

Finding: Based upon a review of other applicable codes, staff does not find the petition wholly compliant with applicable regulations (see following discussion).

City Code 21A.55.090: Specific Standards for Planned Development in Certain Zoning Districts: Planned developments within the TC-75, RB, R-MU, MU, CN, CB, CSHBD districts, South State Street corridor overlay district and CS district (when the CS district is adjacent to an area of more than 60 percent residential zoning located within 300 feet of the subject parcel to be developed, either on the same block or across the street), may be approved subject to consideration of the following general conceptual guidelines (a positive finding for each is not required):

A. The development shall be primarily oriented to the street, not an interior courtyard or parking lot;

Analysis: The primary entrance into the proposed restaurant is on the east façade, adjacent to the parking lot. Although the applicant has included architectural features along 2100 South, such as a porte-cochere and two small patios, staff does not agree with the applicant that the design will create a "strong street presence."

Finding: Although the front façade does include additional architectural detailing, the development is not primarily oriented to the street.

B. The primary access shall be oriented to the pedestrian and mass transit;

Analysis: The development provides direct pedestrian access from 2100 South Street, and is located immediately adjacent to a Utah Transit Authority bus stop. Furthermore, the proposed development will maintain an existing pedestrian path from an adjacent hotel, the Homestead Village.

Finding: The primary access is oriented to the pedestrian and mass transit; however the proposed pedestrian pathways through the drive-through lane are discouraged by the SHCMP.

C. The facade shall maintain detailing and glass in sufficient quantities to facilitate pedestrian interest and interaction;

Analysis: As summarized in the Petition Narrative, the proposal does include 41% non-reflective glass along the front façade, pedestrian paths from adjacent land uses, and two patios for outdoor dining. However, due to the location of the drive through, the primary building façade is setback approximately 21 feet from the property line, which will diminish pedestrian interest and interaction.

Finding: Although the building façade does contain appropriate amounts of glass and pedestrian access, the building setback is not conducive to facilitate pedestrian interest and interaction.

D. Architectural detailing shall emphasize the pedestrian level of the building;

Analysis: The proposed building is essentially a single-story structure with additional height to screen roof mounted mechanical systems and create visual interest. Overall height is approximately 25 feet. As such, the proposed building is pedestrian in scale.

Finding: Proposed architectural detailing emphasizes the pedestrian level of the building.
E. Parking lots shall be appropriately screened and landscaped to minimize their impact on the neighborhood;

Analysis: The proposed development will utilize the existing parking lot and maintain most of the existing mature landscaping located within and around the subject property. The applicant also intends to retain an existing masonry wall that screens a portion of the parking lot. As stated previously, all surrounding land uses are commercial in nature.
F. Finding: The proposed parking lot shall be appropriately screened and landscaped to minimize their impact on the neighborhood.

G. Parking lot lighting shall be shielded to eliminate excessive glare or light into adjacent neighborhoods;

Analysis: The applicant has stated that all lighting will be downward oriented and will use appropriate "cut-off" shields to prevent light glare. However, staff encourages installation of low powered accent lighting for architectural and landscape features.

Finding: Parking lot lighting shall be shielded to eliminate excessive glare or light into adjacent neighborhoods.

H. Dumpsters and loading docks shall be appropriately screened or located within the structure; and

Analysis: The proposed development includes a separate, masonry enclosure to store a trash dumpster and other maintenance equipment. The proposed development does not include a loading dock.

Finding: The dumpster shall be appropriately screened or located within the structure.

I. Signage shall emphasize the pedestrian/mass transit orientation.

Analysis: The development includes a monument sign constructed of building materials identical with the proposed restaurant. Wall mounted signs are primarily comprised of individual channel letters with smaller cabinet or "box" signs. Way-finding signage will be pedestrian in scale and visible from mass transit services.
J. Finding: Signage shall emphasize the pedestrian/mass transit orientation.

City Code 21A.26.060. C. Conformance with Adopted Business District Design Guideline Handbook: All new construction of principal buildings and additions that increase the off street parking requirement shall be subject to and shall conform with the adopted business district design guidelines handbook located as an appendix section in the Sugar House master plan.

Analysis: The Sugar House Business District Design Guideline Handbook contains 12 design categories and approximately 111 separate policies (see Attachment I - Sugar House Business District Design Guideline Handbook). In response, the applicant submitted a "summary" of compliance with these policies (see Attachment J - Summary of Sugar House Business Design Compliance). Although staff finds the proposal to be compliant with most of the stated policies, the petition is deficient with the following:

Pedestrian/Bicycle System Design Guidelines

- Provide proper separation of pedestrian and vehicular movement at a scale that encourages activity and pedestrian comfort (italics added for emphasis, SHCMP, page 22).
- Orient public entrances to the street. Functional entrances every 30 linear feet is desirable (italics added for emphasis, SHCMP, page 22).
- Require continuous street frontages except for driveways, plazas and walkways that allow the pedestrian to get to parking located behind buildings (italics added for emphasis, SHCMP, page 22).

Vehicular Circulation and Parking Design Guidelines

- Design interior drives and parking lots so that pedestrian, service, and vehicular conflicts are minimized (italics added for emphasis, SHCMP, page 23).

Building Architecture and Siting

- Require the general pattern of buildings to include and emphasize the importance of public gathering spaces and pedestrian connections (italics added for emphasis, SHCMP, page 23).
- Consider the relationship of building forms to one another and to other elements of the Sugar House area so the effects will be complimentary and harmonious (italics added for emphasis, SHCMP, page 23).
- Orient buildings that are adjacent to the street, towards the street and promote a high quality image for each project (italics added for emphasis, SHCMP, page 23).

Finding: Although the proposal is largely compliant with the adopted Sugar House Business Design Guideline Handbook, staff does not find the proposal compliant with significant policies relative to pedestrian oriented design and building orientation.

\qquad

$$
2100 \text { SOUTH STREET }
$$

I PRELIMINARY SITE PLAN

 Rer

LEGEND:

 LAMOSCAPNG AEEAS, F-AG POLE, ETC	2×6 W000 ST0
	W000 51
-	
 MORE T-AN 2.2. RESTROOM FROM DINNG "	STONE VENE LOW WALL

6. DRIVE - THRU WINDOW


```
7. STOREFRONT NOTES:
```



```
M,
```



```
M,
```

 8. STUCCO:
 9. STUCCO COLORS

I. METAL AWNING:

14. ATTIC ACCESS PANEL:

2100 SOUTH STREET

$\frac{\text { GENERALLINNSCAPP NOTES: }}{1}$

rrigation notes

rem
${ }^{12} 12$.

ncsunulasuma

(\#ib) PIPE \& WIRE TRENCHING

$\left(\frac{6}{120}\right)$ ROTOR POP-UP HEAD

(\%) POP-UP SPRAY SPRRNKLER

(
(120) QUICK-COUPLING VALVE

$\left(\begin{array}{c}\text { c } \\ 120 \\) \\ \text { CONTROL VALVE }\end{array}\right.$

(B) IRRIGATION CONTROLLER SCIIE Mont

Chick-fil-A, Inc.
16 Technology Drive
Suite 148
Irvine, California 92618
Telephone Toll-free 888 CFA-WEST (888 232-9378)
www.chick-fil-a.com

July 7, 2010
City of Salt Lake City
Members of the Planning Commission
451 South State Street
Salt Lake City, UT 84114
Subject: Planned Development Objectives
Proposed Chick-fil-A/Sugar House
PLNSUB2010-00112
Honorable Members of the Commission:
In accordance with City Code 21A.55.101, the following identifies specific objectives that this application for a new Chick-fil-A restaurant will achieve:

1. The proposed Planned Development Amendment preserves the original site plan layout for this project (Homestead Village and restaurant). The existing plan has a single access off 2100 South, efficient parking fields for both businesses (no conflicts with the right-of-way) and pedestrian access to the proposed restaurant. The 9'0" pedestrian corridor easement for access to Hidden Hollow from 2100 South is preserved on the western boundary of the property.
2. The existing mature street front and on site parking lot trees and landscaping will be preserved as part of the proposed development. A new landscape palette using all drought tolerant plans to create a pleasing environment surrounding the building are proposed.
3. Chick-fil-A has adopted the following "green" building design features:

- Energy management controls for efficient HVAC (automatic setbacks based on building occupation) and Lighting usage (all fixtures are fluorescent)
- Low-E glass as part of a double pane window system
- Energy Star rated equipment, including all refrigerators and the signature Henny Penny fryers
- Solar Reflective Roof system exceeds LEED requirements (87.5% initial reflectivity and 95% emittance)
- All plumbing fixtures are low flow
- Chick-fil-A has adopted recycling programs for both construction waste and daily operations (in particular cardboard waste).
- All landscape materials are drought tolerant
- All building signage uses efficient LED lighting

4. There are no historically significant structures within the Planned Development. The proposed Chick-fil-A restaurant building is designed to blend with the existing architecture in this northern section of the Sugar House Community, at the request of the Community Council.
5. Chick-fil-A is sensitive to the pedestrian goals of the community. The proposed building siting and site circulation are intended to encourage the efficient use of the existing land and resources.

The proposed building has been designed to create a street front presence, with recognizable pedestrian pathways to the restaurant entry and patio areas for those customers who will frequent the business by bicycle or on foot. It is also critical that the site function effectively to allow a safe and efficient flow of traffic to, from and within the site. This efficiency is critical to create a safe environment for pedestrians, as well as to effectively serve the community at large -95% of whom travel by car.

We hereby request your support for our project - Chick-fil-A has been embraced by the Salt Lake area community and we believe we will be a tremendous asset to the Sugar House Community.

Don Ikeler
Development Manager

Chick-fil-A/Homestead Village Summary of CSHBD1 Compliance "Exhibit A"

Code Section	Requirement	Description of Compliance
21A.26.010 C-1	Refuse Control	A trash enclosure is provided and is screened with landscaping
21A.26.010 C-2	Lighting	Lot lighting has been designed to be directed onsite without glare to surrounding properties
21A.26.010 C-3	Outdoor sales	Outdoor sales are not proposed.
21A.26.010 D	Permitted Uses	Restaurants with drive-through facilities are a P (permitted) use within the Zone (Table 21A.26.080)
21A.26.010 E	Conditional Uses	Not applicable
21A.26.010 F	Accessory Uses, Structures	There are no accessory uses or structures proposed
21A.26.010 G	Off Street Parking \& Loading	In accordance with Chapter 21A.44: (9) spaces are required by Code (2 per 1000) (24) are provided. (5) car drive thru stacking is required; (10) car stacking is provided. No loading is required
21A.26.010 H	Landscaping \& Buffering	The Landscape Plan is in conformance with section 21A. 48 of the Zoning Code as required
21A.26.010 1	Signs	Signage proposed conforms with Chapter 21A. 46 as required
21A.26.010 J	Modification to Maximum Height	A modification to maximum height is not requested. Building is 25 feet, allowed is 30 feet.
21A.26.010 K	Bed \& Breakfast Establishments	Not applicable
21A.26.060 A	Purpose of the CSHBD	See Exhibit B - Design incorporates the goals of the CSHBD
21A.26.060 B	Uses	Restaurants with drive-through facilities are a P (permitted) use within the Zone (Table 21A.26.080)
21A.26.060 C	Conformance with District Design Guideline Handbook	Design conforms with Design Guidelines. See Exhibit B
21A.26.060 D	Conditional Building \& Site Design Review	Subject application
21A.26.060 E	Minimum Lot Size	No minimum lot area or width is required

21A.26.060 F 1-5	Minimum Yard Requirements	Front yard: No minimum yard is required Maximum setback: The maximum setback is 15 feet. The proposed building setback is zero. Interior yards: None required Rear yards: No minimum yard is required. Buffer yards: Project does not abut residential
21A.26.060 G1a	Maximum Height	Buildings cannot exceed 30 ft . in CSHBD1. Building height at its highest point is 25 ft .
21A.26.060 H	Minimum First Floor Glass	First floor requirement is 40% glass surface. A total of 41% glass surface is provided.
21A.26.060 I	Mechanical Equipment	All roof top equipment is screened by parapets and towers.
21A.26.060 J	First Floor/Street Level Requirements	The restaurant use is allowed for street level buildings
21A.26.060 K	Residential Requirement for Mixed Use	Not applicable
21A.36.010 A	Enclosed Business Activity	All business activity is located within an enclosed building except where otherwise allowed (outdoor sales are permitted, patio not listed in code)
21A.36.010 B	One Principle Building Per Lot	One building is proposed
21A.36.010 C	Frontage of Lot on Public Street	The building frontage is adjacent to 2100 South St.
21A.36.010 D	Hazardous Waste Prohibition	No hazardous waste is associated with the use.
21A.36.010 E	Flag Lots in Nonresidential Districts	Not applicable
21A.36.020 A	Conformance with District Requirements	The project is in conformance with District Requirements as noted above.
21A.36.020 B	Obstructions in Required Yards	There are no required yards
21A.36.020 C	Height Exceptions	Height exception is not required
21A.36.020 D	Front \& Corner Side Yard Driveways	Not applicable - existing driveway or drive through lane do not encroach into a required setback.
21A.40.160	Ground Mounted Utility Boxes	Existing transformer will be screened with landscaping in accordance with existing regulations

2100 SOUTH STREET

FRONT ELEVATION (NORTH)

DRIVE-THRU ELEVATION (SOUTH)

Onich-fil-s
PRELIMINARY ELEVATIONS Sugarhouse, UT
File Name: 09228E-ALL

Note:
All roof top mechanical equipment shall be located din
equiument well and d screened from view by parapet walls. COLOR AND MATERIAL LEGEND

104 Paint-Shemwin Williams - - tsw 2823 3 "Rockwood Clay"

Attachment F

Citizen Comments

May 14, 2010

Planning Commission
c/o Michael Maloy
Planning Department
451 S State St
SLC, UT 84111

RE: Planning Commission consideration of Chik-Fil-A application

Dear Members of the Planning Commission:

I write to you today as a nearby resident of the proposed Chik-Fil-A drive thru restaurant being proposed at the current site housing Lonestar Steakhouse. I have resided at 1178 Ramona Ave for approximately 13 years and am very concerned about the impacts this development will bring to my neighborhood and to visitors of the Sugar House Business District.

There are a variety of problems associated with bringing a drive thru restaurant to this specific location. The traffic along 2100 S in this area is nightmanish at many times of the day. The volume of traffic at peak hours exceeds the roads capacity as people are trying to access the freeway or get to work. This development in question would have only 1 entrance and exit onto 2100 S making the flow even more difficult. Chik-Fil-A representatives commented their own traffic studies show there would be a queue of 3 cars attempting to exit the Homestead Suites site during these peak hours. This study says nothing about the effect of the increase "in \& out" traffic and queue will have on the flow of 2100 South. Additionally, even if the exit became a "right hand turn only" we all know people will try and turn left no matter what the conditions are because this is Utah and that is how we drive?

My primary concern with the amount of traffic along with section of 2100 is the issue of pedestrian safety. I currently sponsor the crosswalk on 2100 S and 1200 E in order to at least keep orange flags in supply. Not that they do much good. As a frequent pedestrian in this crosswalk I can no longer count the times I have nearly been hit or my dogs run over because a motorist failed to stop. The majority of the time the driver had plenty of time to stop and saw me waving my bright orange colored flag and made the conscious choice to speed through without regard to my safety. Unfortunately, I have more stories about witnessing near misses of others than I care to recount. I have been working with Councilman Simonsen to try and obtain a flashing light crosswalk (much like those recently replaced along 1300 E) to at least try and calm traffic. There is no word on this request and the city is not able to provide other traffic calming measures at this time.

Additionally, it is important for the planning commission to review the proposed Woodbury/Westminster mixed use development proposal along 1300 E . They propose to relocate the pedestrian crosswalk at the intersection of 2100 S and Douglas St to the west side of that intersection to properly align it with the easement allowing pedestrian travel and access to Hidden Hollow. To put this in context the entrance/exit for a highly visited drive thru restaurant will be in-between to busy and dangerous crosswalks. The proximity to these crosswalks only exacerbates the efforts to calm traffic and highlight pedestrian's right of way through the crosswalk.

This is an acute impact to my neighborhood and visitors alike. How can we promote a pedestrian oriented business district when it is dangetous to be a pedestrian in this area? A drive thru restaurant in this particular spot seems
highly misplaced and there must be rrore appropriate sites within this area thatcan house a drive thru restaurant? I can think of many sites.

Please also consider the RDA property on Wilmington Ave will also be a Woodbury/Westminster mixed use building that provides student apartment housing. Both of these developments will be adding to the pedestrian traffic from those areas to Westminster College and adding to the potential for more conflicts and physical injury in the crosswalks aforementioned.

Chik-Fil-A representatives also noted the full support of the Homestead Suites of their proposal. I am certainly not surprised by their support. I walked my dog along this stretch of 2100 S for 3 years at 6:30am every day, and witnessed the residents of the Homestead Suites attempt to cross 2100 S to get to Catl's Jr. This was the closest offering of coffee and breakfast so a fast food restaurant located within the parking lot would be a positive thing to Homestead Suites. Ironically this only illustrates my point about the difficulty and danger in crossing 2100 S .

Finally, the design of the Chik-Fil-A, while pleasing and attractive is not oriented to the sidewalk. The location of the drive thru creates a visual and physical obstacle for pedestrians to access the entrance provided on the northwest corner of the building. The Sugar House Business District Master Plan calls for retail to be oriented to the street to invite foot traffic. Additionally the SHBDMP calls for enhanced pedestrian crosswalks and traffic calming measures. I wonder how much longer we can ignore the vision of the master plan and needs of residents and patrons of the business district and still think we will be able to retroactively implement these measures.

I urge the planning commission to seriously consider the very real impact a drive thru restaurant will have on the residents nearby with the additional traffic added to a street system that already fails to meet load at various times of the day. Please address the lack of pedestrian safety and traffic calming measures in this area before approving this proposal.

Sincerely,

Amy Barry
1178 Ramona Ave
801-699-6924
Sugar House Community Council Trustee

From:	Scott Kisling [scott.kisling@comcast.net]
Sent:	Thursday, July 01, 2010 2:30 PM
To:	Maloy, Michael
Cc:	Sugar House CC Chair
Subject:	PLNSUB2010-00112 Chick-fil-A Restaurant
Categories:	Other

Mr. Maloy,
As a private citizen but former Sugar House Community Council Chair during the City's 2001 update of the Sugar House Master Plan I would be very disappointed if the Planning Commission were to approve a drive-through restaurant in the Sugar House Business District zone. As not doubt others will point out specifically during the hearing, every applicable master plan encourages pedestrian-oriented businesses and restaurants over automobile-oriented ones. It was considered important enough to be placed on page 1 of the SHMP under "General Goals," and again on page 11 under "Multi-modal Priorities." Issues caused by automobiles and primarily automobile-oriented businesses and restaurants are discussed throughout the document.

Drive-through business and restaurants are discouraged in the Gray Report of the 1980s, the Wikstrom Study of the 1990s and others, including minor reports stating that pedestrian access along the public transportation corridor of 21 st South would be squandered by the use of land for primarily automotive uses.

I would be very happy for Chick-fil-A to open a conventional restaurant, especially if done within the existing building, but only if it conformed to the guidance of our Master Plans.

Believe me, those master plans were a result of extensive discussion that included existing land owners, business owners, developers, and Westminster College, as well as representatives from the walking, shopping and, yes... driving, communities. Much compromise was made by all stakeholders at the time each master plan was written. With no changes in the public's desire over several decades there is no reason for further compromise.

Thank you for your effort to improve the City for all of us.
Sincerely,
Scott Kisling
2409 Lynwood Drive

Memo

To: Judi Short, Chair, Sugar House Community Council Land Use and Zoning Committee
From: Elaine J. Brown, Trustee representing the Dilworth Neighborhood of the Sugar House Community Council
CC: Salt Lake City Planning Commission, J.T. Martin, Soren Simonsen
Date: 7/3/2010
Re: Sugar House Chick-fil-A Proposal

I wholeheartedly support the Chick-fil-A proposal presented at the May 5, 2010 Sugar House Community Council Meeting. I was particularly impressed with their statements regarding their desire to work with the community in which they are planning a store by:

- Researching the area to determine if the store will be a success, pointing out that they have never had a failure despite the current negative economic conditions. They have done that research and concluded that they can be successful in the proposed spot. Moreover, according to their representatives social media networks including Facebook and Twitter also reflect strong potential support of a Sugar House Chick-fil-A.
- Ordinarily constructing new restaurants that will fit into the surrounding area, rather than trying to remodel an existing building. They plan to demolish the Lone Star building to construct their proposed design.
- Seeking local individuals with which to partner in running the store rather than bringing people in from out of town, keeping both staff and management local
- Supporting local community causes, such as the continuation of the Sugar House fireworks that they heard about during the May 5 meeting as they waited to present their proposal. I was especially impressed by this inasmuch as there is so much pressure to promote local business, but it has been national chains who have stepped up to the plate to ensure the continuity of this Sugar House tradition including Chick-fil-A who is already demonstrating its potential support of local Sugar House issues

I was impressed with the design plans presented:

- Unlike the Lone Star, Chick-fil-A's proposed entrances will face east, not the busy 2100 South. While it is true that they will face a parking lot, it is still better than entering off 2100 South.
- I like the patio dining area and by all accounts diners do too as evidenced by the strong support of establishments that offer an outdoor dining option, which is also enticing to foot traffic, promoting the walk-able aspect of Sugar House.
- The drive thru entrance and exit into the Homestead Suites Parking lot keeps this traffic off the busy 2100 South thoroughfare.

I think Chick-fil-A's Sunday closing policy will be viewed favorably by many in this community and will help promote local employment since it ensures that all employees have one guaranteed weekend day off.

Although Chick-fil-A food is considered fast food, it is, as their representatives pointed out, of higher quality and there are no value items. I can personally attest to the quality of the food since I consider myself a Chick-fil-A junkie; it is delicious!

Lastly, high end family-type dining options are somewhat limited in the traditional heart of Sugar House and especially in the Commons area. A Chick-fil-A will bring better balance.

I urge strong support of the Chick-fil-A proposal by the Sugar House Community Council, the Salt Lake City Planning Commission and the City Council.

From: Walsh, Barry
Sent: Wednesday, April 07, 2010 10:55 AM
To: Maloy, Michael
Cc: Young, Kevin; Drummond, Randy; Itchon, Edward; Garcia, Peggy; Butcher, Larry
Subject:
Pet PLNSUB2010-00112

Categories: Other

April 7, 2010

Michael Maloy, Planning

Re: Planned development Petition PLNSUB2010-00112 for construction of a new Chick-fil-A restaurant at 1206 E 2100 South.

The division of transportation review comments and recommendations area as follows:

The site has an existing restaurant (Lone Star) that was built with the six stalls per 1,000 sf. parking requirement and provided 30 parking spaces with varying widths. The new proposed building is the same size with the new parking requirement of only two stalls per 1,000 sf. And is providing 30 parking stalls (plan notes 24) with a uniform $8^{\prime}-6^{\prime \prime}$ stall width. The new design is also proposing a drive-up window with five plus vehicle stacking as required.
For transportation's final review, we need a fully dimensioned civil site plan showing parking stall width, depth, isle width, etc. we also need the dimensions of the drive-up isle width, radii, etc. include overhead awning height dimensions of $8^{\prime}-2^{\prime \prime}$ minimum.
Please correct the parking calculations and include the ADA provision and the 5% bike parking with bike rack detail and location.

Sincerely,

Barry Walsh

```
Cc Kevin Young, P.E.
Randy Drummond, P.E.
Ted Itchon, Fire
Peggy Garcia, Public Utilities
Larry Butcher, Permits
File.
```


Maloy, Michael

From:
Sent:
To:
Cc:
Subject:
Attachments:
Categories:

Hardman, Alan
Thursday, April 15, 2010 9:20 AM
Maloy, Michael
Butcher, Larry
PLNSUB2010-00112 Chick-fil-A
DRT 1206 East 2100 South October 28 2009.doc

Other

Hi, Michael,

Please see the attached DRT comments which address the preliminary zoning issues for this petition. I have also posted the review and completed the task in accela.

Alan

Address:	1206 East 2100 South
Project Name:	Chick-Fil-A
Contact:	Deborah Kerr 801 273-4649 debkerr@kpsinc.com
Date Reviewed:	October 28, 2009
Zone:	CSHBD1

The Development Review Team (DRT) is designed to provide PRELIMINARY review to assist in the design of the complete site plan. A compiete review of the site plan will take place upon submittal of the completed site plan to the Permits Counter.

Project Description: New restaurant with drive-through.

Ken Brown/Zoning:

Will need to obtain a separate demolition permit and a new certified address. Proposal will need to provide parking calculations for the use. The site plan will need to document all cross access \& drainage easements. Proposal to comply with the design guidelines handbook located as an appedix section in the Sugar House Master Plan. Reduction of maximum setback may be authorized throught the Conditional building \& site design review process. Discussed minimum $1^{\text {st }}$ floor glass, mechanical equipment screening, ground mounted utility boxes, etc. Will need to discuss with the Planning Dept. whether this proposal will require modification of Petition \#410-247. Gave applicant a copy of the CSHBD1 requirements.

Barry Walsh/Transportation:

Demo existing building \& re-certify address. Need verification access easements, P.U.D. Need parking calculation to include ADA \& 5% bike. Drive up window requires 5 car stacking. (Show min. 18^{\prime} inside radii \& 28^{\prime} outside radii-12' land). Outdoor dining over $500 \mathrm{~s} / \mathrm{f}$ to be included in parking calculations.

Ted Itchon/Fire:

Cooking protection, Class I hood \& duct extinguishing system. Fire extinguishers K \& $2 \mathrm{~A}: 10 \mathrm{BC}$ rated, in dining area. Provide fire sprinkler system with interconnection to remote station.

Brad Stewart/Public Utilities:

Demolishing existing building. Need civil site plan showing water, sewer, drainage. Need interior plumbing plans. Need grease interceptor. On site plan, show existing utilities \& proposed. Abandon all un-needed water \& sewer connections. No water meters in driveways. If moving water meter more than three feet, must abandon at main \& re-tap.

Randy Drummond \& Chris Norlem/Engineering:

At the time of application for approval, an inventory of the condition of the existing street and/or access-way improvements will occur. The condition of said improvements will be determined, and any sub-standard improvements (curb, gutter, sidewalk, asphalt paving, etc.) will be required to be either repaired or replaced as a condition of approval of the project. Certified address required. See Alice Montoya at 535-7248. Public Way Permit
is required for project completion. Licensed, bonded and insured Contractor to obtain permit to install or repair required street improvements. Site plan required. Demolition permit required.

Maloy, Michael

From:
Lucas, Duran
Sent:
Friday, April 16, 2010 10:11 AM
To:
Subject:
Maloy, Michael
PLNSUB2010-00112
Categories:

Other

April 16, 2010
Re: PLNSUB2010-00112
Michael,
Property Management has reviewed the referenced petition. The petitioner's development does not seem to be encroaching on any city property or public right-of-way, however, if at any time the planned development changes and an encroachment results, the petitioner will then be required to sign a lease agreement for the encroachment. With that being said, we have no objection to the petitioner's request and will defer to the other City departments' comments.

Duran Lucas
Property Management

ai

Hours Spent: Hours spent:
Action by Department
PU Engineer Est. Completion Date Display Comment in ACA Public Ulilities department has no objection to the current proposal. Prior to construction, civil engineer demolition plans and End Time:

Buable:
Yes
Trme Tracking Start Date Com Dispa in ACA

3

Quicktinks

Fire
General Reports
Ground Transportation
GHAZE

- Inspections
> Planning
Transportation
> Utilities
My Reports
ลsuap! $\frac{1}{\text { ssau!sng }}$ סupiling
CED
Engineering
萢
Fire

Difection	Street Name	Street Type first Name	Last Name
E	2100 S		Christine

\pm GeTo \quad Wo Task Details Pubbic
Assigned Date

04/06/2010
Current Status
Complete
Action By
Owner
Contact

Maloy, Michael

From:	Young, Kevin
Sent:	Thursday, July 01, 2010 3:26 PM
To:	Maloy, Michael; Wallsh, Barry
Subject:	FW: Chick-fil-ATraffic Study
Attachments:	Traffic Study May 2010.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged
Categories:	Other

Michael,
I apologize for the delay in getting back to you regarding the Chick-fil-A traffic study.
The traffic study looked at current traffic conditions and the projected traffic conditions with the project included. The traffic study indicates that there will be an increase in traffic volume with the new Chick-fil-A restaurant, as compared to the existing Lone Star restaurant. The 1300 East/2100 South intersection currently operates at a LOS E. With the addition of the Chick-fil-A restaurant, this intersection will continue to operate at a LOS E, but with a small increase in overall delay. No mitigation measures were recommended in the study or are required at this intersection.

The project access on 2100 South operates at an overall LOS A, with or without the project. However, if individual movements are considered, the northbound movement out of the project currently operates at a LOS D. With the addition of the projected Chick-fil-a traffic, this northbound movement out of the project access degrades to LOS E. Queuing to exit this access currently occurs on-site and any increase in queuing will also occur on-site and not impact 2100 South. No mitigation measures were recommended or are required at this access.

Kevin
Kevin J. Young, P.E.
Transportation Planning Engineer
801-535-7108

From: Maloy, Michael
Sent: Wednesday, June 09, 2010 2:59 PM
To: Walsh, Barry
Subject: FW: Chick-fil-A/Traffic Study
Barry:
Can you review and comment on this study for me ASAP? Thanks!
Sincerely,
Michael Maloy, AICP
Principal Planner
Salt Lake City Corp
PO Box 145480
451 S State Street Rm 406
Salt Lake City, Utah 84114-5480
(801) 535-7118 Office
(801) 535-6174 Fax
michael.maloy@sicgov.com

HALES (1)ENGINEERING

Chick-fil-A Traffic Impact Study

1206 East 2100 South Salt Lake City, Utah 84106

May 2010
UT10-213

HALES ($($ ENGINEERING
 innovative transportation solutions

EXECUTIVE SUMMARY

This study addresses the traffic impacts associated with the proposed Chick-fil-A restaurant located at 1206 East 2100 South, Salt Lake City, Utah. The proposed development is located in the Sugar House area south of 2100 South between 1200 East and Douglas Street. The location is currently occupied by the Lone Star Steakhouse.

2100 South is the major thoroughfare running east and west through Sugar House adjacent to the subject property. There is an existing single point of access to this five lane roadway, with a single lane into the property and a single lane exiting the property. The street access will not be relocated or modified. No additional access points are proposed.

The Homestead Village hotel shares the access. None of the adjacent properties currently have cross access and the northeast portion of the property is separated by grades in excess of fifteen feet from the adjacent properties.

2100 South has two through lanes eastbound and two through lanes westbound with a center turn lane. This condition exists at the entire property frontage. A pedestrian cross walk is located in front of the proposed Chick-fil-A building at 1200 East. There is also a pedestrian cross walk at Douglas. These crossings are not signalized.

There is a major shopping center to the west of the property with various retail and restaurant tenants. While a few of the buildings front 2100 South, the predominant portion of the center surrounds a major parking field in the center of the property which serves the center's businesses.

Directly across 2100 South from the Homestead Village property, there is an existing Carl's Jr. restaurant with a drive-thru as well as a Jiffy Lube and Tune car service center.

East of the property is a residential condominium project adjacent to the Chick-fil-A / Homestead Village land. Further east, at the intersection of 1300, is a gas station with a car wash facility, and a Kentucky Fried Chicken with drive-thru.

TRAFFIC ANALYSIS

The following is an outline of the traffic analysis performed by Hales Engineering for the traffic conditions of this project.

Existing (2010) Background Conditions Analysis

Hales Engineering performed weekday p.m. (4:00 to 6:00) peak period traffic counts at the following intersections on Wednesday, February 10, 2010:

HALES (henGINEERING
 innovative transportation solutions

- 1200 East / 2100 South
- Project Access / 2100 South
- Douglas Street / 2100 South
- 1300 East / 2100 South

Because the development is a restaurant with peak usage during the midday lunch hour, Hales Engineering counted the project access between 11:00 a.m. and 1:00 p.m. to verify that the p.m. peak hour is the controlling time period (highest volume time of day). The counts showed that the p.m. peak hour is the controlling hour because traffic volumes on 2100 South were 21 percent higher during the evening than the midday hour.

Therefore, the weekday p.m. peak hour was chosen for analysis. Detailed count data is included in Appendix A.

Due to the existing saturated traffic conditions at the 1300 East / 2100 South intersection (as is shown in Table ES-1), the intersection experiences constrained movements and currently operates at a level of service (LOS E).

Project Conditions Analysis

The proposed land use for the development has been identified as follows:

- Chick-fil-A Restaurant:
$4,245 \mathrm{sq} \mathrm{ft}$

The projected trip generation for the development is as follows:

- Noon Peak Hour: 259 vph
- p.m. Peak Hour: 170 vph
o Entering: 88 vph
o Exiting: 82 vph
Trip generation information specific to Chick-fil-A restaurants was provided for several other existing projects and compared with ITE Trip Generation data. By comparison, the trip generation information provided by Chick-fil-A was greater than the ITE trip generation for a fast food restaurant with a drive through window. Therefore, the higher specific Chick-fil-A trip generation information was used for this study providing a more conservative analysis for this project. As will be discussed in the body of the report, a 50 percent pass-by reduction was taken to account for trips already on the roadway that will enter the site.

Existing (2010) Plus Project Conditions Analysis

As shown in Table ES-1, both study intersections will experience constrained levels of service (LOS E) conditions. At 1300 East / 2100 South LOS E is an existing condition. The

HALES \cap ENGINEERING
 innovative transportation solutions

Project Access / 2100 South reduction in service only impacts the subject property as the site is designed to accommodate the project related delays.

TABLE ES-1 P.M. Peak Hour Salt Lake City Chick-fil-A - TIS					
Intersection	Existing 2010 Background	Existing 2010 Plus Project			
Description				LOS (Sec/Veh')	LOS (Sec/Veh')
Project Access / 2100 South	NB / D (26.8)	NB / E (49.2)			
1300 East / 2100 South	E (68.7)	E (74.7)			
1. Intersection LOS and delay (seconds/venicle) values represent the overall intersection average for signalized and all-way stop controlled intersections and the worst approach for all other unsignalized intersections.					
Source: Hales Engineering, February 2010					

RECOMMENDATIONS

The following mitigation measures are recommended:

Existing (2010) Background Conditions Analysis

No mitigation measures are recommended.
Existing (2010) Plus Project Conditions Analysis
No mitigation measures are recommended.

Summary of Key Findings/Recommendations

The following is a summary of key findings and recommendations:

- The 1300 East / 2100 South intersection currently experiences LOS E conditions. However, no mitigation measures are recommended because increasing capacity at this intersection would not be feasible and would require impacting adjacent land uses.
- By adding the project traffic, the LOS for the project access will degrade from LOS D to LOS E. Although vehicles are platooned quite well along 2100 South, and several

HALES(h)ENGINEERING
 innovative transportation solutions

large gaps do occur, there are still occasions when vehicles will need to wait on average longer than 35 seconds in order to turn left or right out of the development. This condition only impacts the subject property, which has been designed to accommodate the impacted vehicles. The LOS E does not impact through traffic or pedestrian movements along 2100 South.

- Although queuing will occur on-site when gaps are not available in the 2100 South traffic stream, the site is sufficiently designed to accommodate the additional stacked vehicles. The average queue length is estimated to be approximately 70 feet or approximately 3 vehicles. However, the $95^{\text {th }}$ percentile (projected worst case) queue length will be approximately 140 feet or 7 vehicles which will be contained on-site.

HALES (1) ENGINEERING

innovative transportation solutions

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1
TRAFFIC ANALYSIS 1
RECOMMENDATIONS 3
TABLE OF CONTENTS i
LIST OF TABLES ii
I. INTRODUCTION 1
A. Purpose 1
B. SCOPE 1
B. Analysis Methodology 2
C. Level of Service Standards 2
II. EXISTING (2010) BACKGROUND CONDITIONS 4
A. PURPOSE 4
B. Roadway System 4
C. Traffic Volumes 4
D. Level of Service Analysis 5
E. Mitigation Measures 6
III. PROJECT CONDITIONS 7
A. Purpose 7
B. Project Description 7
C. Trip Generation 7
D. Trip Distribution and Assignment 8
IV. EXISTING (2010) PLUS PROJECT CONDITIONS 9
A. Purpose 9
B. Traffic Volumes 9
C. Level of Service Analysis 9
D. Queuing Analysis 9
E. Mitigation Measures 10
Appendix A: Turning Movement CountsAppendix B: LOS ResultsAppendix C: Project Site Plan
Appendix D: FiguresAppendix E: 95 ${ }^{\text {th }}$ Percentile Queue Lengths

HALES(h)ENGINEERING

LIST OF TABLES

Table 1 Level of Service Descriptions .. 3
Table 2 Existing (2010) Background p.m. Peak Hour Level of Service 5
Table 3 Existing (2010) Plus Project p.m. Peak Hour Level of Service 10

HALES ($)$ ENGINEERING
 innovative transportation solutions

I. INTRODUCTION

A. Purpose

This study addresses the traffic impacts associated with the proposed Chick-fil-A restaurant located at 1206 East 2100 South, Salt Lake City, Utah. The proposed development is located in the Sugar House area south of 2100 South between 1200 East and Douglas Street. The location is currently occupied by the Lone Star Steakhouse.

2100 South is the major thoroughfare running east and west through Sugar House adjacent to the subject property. There is an existing single point of access to this five lane roadway, with a single lane into the property and a single lane exiting the property. The street access will not be relocated or modified. No additional access points are proposed.

The Homestead Village hotel shares the access. None of the adjacent properties currently have cross access and the northeast portion of the property is separated by grades in excess of fifteen feet from the adjacent properties.

2100 South has two through lanes eastbound and two through lanes westbound with a center turn lane. This condition exists at the entire property frontage. A pedestrian cross walk is located in front of the proposed Chick-fil-A building at 1200 East. There is also a pedestrian cross walk at Douglas. These crossings are not signalized.

There is a major shopping center to the west of the property with various retail and restaurant tenants. While a few of the buildings front 2100 South, the predominant portion of the center surrounds a major parking field in the center of the property which serves the center's businesses.

Directly across 2100 South from the Homestead Village property, there is an existing Carl's Jr. restaurant with a drive-thru as well as a Jiffy Lube and Tune car service center.

East of the property is a residential condominium project adjacent to the Chick-fil-A / Homestead Village land. Further east, at the intersection of 1300, is a gas station with a car wash facility, and a Kentucky Fried Chicken with drive-thru.

B. Scope

The study area was defined based on conversations with the development team and Salt Lake City engineering staff. This study was scoped to evaluate the traffic operational performance impacts of the project on the following intersections:

- Project Access / 2100 South
- 1300 East / 2100 South

HALES(h)ENGINEERING
 innovative transportation solutions

C. Analysis Methodology

Level of service (LOS) is a term that describes the operating performance of an intersection or roadway. LOS is measured quantitatively and reported on a scale from A to F, with A representing the best performance and F the worst. Table 1 provides a brief description of each LOS letter designation and an accompanying average delay per vehicle for both signalized and unsignalized intersections.

The Highway Capacity Manual 2000 (HCM 2000) methodology was used in this study to remain consistent with "state-of-the-practice" professional standards. This methodology has different quantitative evaluations for signalized and unsignalized intersections. For signalized and all-way stop intersections, the LOS is provided for the overall intersection (weighted average of all approach delays). For all other unsignalized intersections LOS is reported based on the worst approach. Hales Engineering has also calculated overall delay values for unsignalized intersections, which provides additional information and represents the overall intersection conditions rather than just the worst approach.

D. Level of Service Standards

For the purposes of this study, a minimum overall intersection performance for each of the study intersections was set at LOS D. However, if LOS E or F conditions exist, an explanation and/or mitigation measures will be presented where feasible. An LOS D threshold is consistent with "state-of-the-practice" traffic engineering principles for urbanized areas.

HALES ($($ ENGINEERING

Table 1 Level of Service Descriptions

HALES (1)ENGINEERING
 innovative transportation solutions

II. EXISTING (2010) BACKGROUND CONDITIONS

A. Purpose

The purpose of the existing (2010) background analysis is to study the intersections and roadways during the peak travel periods of the day with background traffic and geometric conditions. Through this analysis, background traffic operational deficiencies can be identified and potential mitigation measures recommended. This analysis will provide a baseline condition that may be compared to the build conditions to identify the impacts of the development.

B. Roadway System

The primary roadway that will provide access to the project site is described below:
2100 South - is a city-operated roadway classified by Salt Lake City as an arterial street that provides direct access to the proposed site. This roadway is currently composed of a five-lane cross section with two travel lanes in each direction, and a center two-way left turn lane (TWLTL). No shoulders exist, therefore on street parking is not permitted. The posted speed limit on 2100 South is 30 mph .

C. Traffic Volumes

Hales Engineering performed weekday p.m. (4:00 to 6:00) peak period traffic counts at the following intersections:

- 1200 East / 2100 South
- Project Access / 2100 South
- Douglas Street / 2100 South
- 1300 East / 2100 South

Because the development is a restaurant with peak usage during the midday lunch hour, Hales Engineering counted the project access between 11:00 a.m. and 1:00 p.m. to verify that the p.m. peak hour is the controlling time period (highest volume time of day). The counts showed that the p.m. peak hour is the controlling hour because traffic volumes on 2100 South were 21 percent higher during the evening than the midday hour. Therefore, the weekday p.m. peak hour was chosen for analysis. The p.m. peak hour was determined to be between 5:00 and 6:00 p.m. The traffic counts were seasonally adjusted based on data obtained from a UDOTcontrolled automated traffic recorder (ATR) located near the site. Detailed count data is included in Appendix A.

HALES \cap ENGINEERING

Because the new Chick-fil-A development will be occupying the Lone Star Steakhouse parcel, it was necessary to determine the amount of traffic generated by the Steakhouse so that it can be subtracted from the existing roadway network before adding the new project traffic from the Chick-fil-A. During data collection efforts, Hales Engineering also quantified the number of trips entering and exiting the Lone Star Stake House. During the p.m. peak hour, the following trips were observed for the Steakhouse:

- Entering: 15 vehicles per hour (vph)
- Exiting: 6 vph
- Total: 21 vph

D. Level of Service Analysis

Using Synchro/SimTraffic, which follow the Highway Capacity Manual (HCM) 2000 methodology introduced in Chapter I, the p.m. peak hour LOS was computed for each study intersection. The results of this analysis are reported in Table 2 (see Appendix B for the detailed LOS reports). Multiple runs of SimTraffic were used to provide a statistical evaluation of the interaction between the intersections. These results serve as a baseline condition for the impact analysis of the proposed development during existing (2010) conditions. As shown in Table 2, due to the existing saturated traffic conditions at the 1300 East / 2100 South intersection, it experiences constrained movements and operates at a level of service (LOS E).

Table 2 Existing (2010) Background p.m. Peak Hour Level of Service

HALES (1) ENGINEERING
 innovative transportation solutions

E. Mitigation Measures

The 1300 East / 2100 South intersection currently experiences LOS E conditions. However, no mitigation measures are recommended because increasing capacity at this intersection would not be feasible and would require impacting adjacent land uses. All other study intersections appear to operate at acceptable levels.

HALES ($)$ ENGINEERING
 innovative transportation solutions

III. PROJECT CONDITIONS

A. Purpose

The project conditions analysis explains the type and intensity of development. This provides the basis for trip generation, distribution, and assignment of project trips to the surrounding study intersections defined in the Introduction.

B. Project Description

This study addresses the traffic impacts associated with the proposed Chick-fil-A restaurant located in Salt Lake City, Utah. The proposed development is located in the Sugar House area south of 2100 South between 1200 East and Douglas Street. The location is currently occupied by the Lone Star Steakhouse.

A site plan for the proposed development has been included in Appendix C.
The proposed land use for the development has been identified as follows:

- Chick-fil-A Restaurant:
$4,245 \mathrm{sq} \mathrm{ft}$

C. Trip Generation

Trip generation for the development was calculated using trip generation rates obtained from a study of other Chick-fil-A restaurants. The study, completed by Austin-Foust Associates, Inc., of four similar sites in southern California showed that the average trip generation rate for a Chick-fil-A restaurant is 61 trips per 1,000 square feet during the noon peak hour and 40 trips per 1,000 square feet during the p.m. peak hour. Entering versus exiting rates were not available, therefore Hales Engineering used distribution percentages for the "Fast-Food Restaurant with Drive-Through Window (Land Use Code 934)" published in the Institute of Transportation Engineers (ITE) Trip Generation (8 ${ }^{\text {th }}$ Edition, 2008). Based on this information, trip generation for the proposed project is as follows:

- Noon Peak Hour: 259 vph
- p.m. Peak Hour: 170 vph
o Entering: 88 vph
o Exiting: 82 vph
The rates for the Chick-fil-A restaurants were compared with the rates for "Fast-Food Restaurant with Drive-Through Window" in Trip Generation. According to ITE, the average trip generation rate is 33.84 trips per 1,000 square feet. Therefore, the Chick-fil-A data is higher than the ITE data.

HALES (1)ENGINEERING
 innovative transportation solutions

The trip generation rates identify gross trips to and from a facility as if it were a stand-alone activity. Gross ITE trip generation rates do not account for trips already on adjacent roadways or for internal capture. While internal capture may occur between the on-site hotel and the Chick-fil-A, these trips were considered to be nominal and therefore not reduced from the overall trip generation. Based on the synergy of the surrounding developments and some nearby office land uses some walk up pedestrian traffic will likely visit the site, however, no reductions were taken for this either as it could not be quantified for this site prior to opening. However, pass-by trips for a fast-food restaurant are significant. According to data from the ITE Trip Generation Handbook (2 $2^{\text {nd }}$ Edition, 2004), approximately 50 percent of fast-food restaurant traffic can be attributed to pass-by trips. Given the high traffic volume on 2100 South (greater than 20,000 vehicles per day), the 50 percent pass-by trip reduction appears to be reasonable.

Although the Sugar House area has several bus routes that service 2100 South, Hales Engineering did not make any reductions for transit mode share. This helps ensure that the traffic estimates for the site are conservatively high.

D. Trip Distribution and Assignment

Project traffic is assigned to the roadway network based on the type of trip and the proximity of project access points to major streets, high population densities, and regional trip attractions. Existing travel patterns observed during data collection also provide helpful guidance to establishing these distribution percentages, especially in close proximity to the site. The resulting overall distribution of project generated trips is as follows:

To/from the Development:

- 30% West (2100 North)
- 10\% North (1300 East)
- 40% East (2100 South)
- 20% South (1300 East)

These trip distribution assumptions were used to assign the p.m. peak hour generated traffic at the study intersections to create a trip assignment for the proposed development. Trip assignment is shown in Appendix D.

HALES(h)ENGINEERING
 innovative transportation solutions

IV. EXISTING (2010) PLUS PROJECT CONDITIONS

A. Purpose

This section of the report examines the traffic impacts of the proposed project at each of the study intersections. The net trips generated by the proposed development were combined with the existing background traffic volumes to create the existing plus project conditions. This scenario provides valuable insight into the potential impacts of the proposed project on background traffic conditions.

B. Traffic Volumes

Project trips were assigned to the study intersections based on the trip distribution percentages discussed in Chapter III and permitted intersection turning movements.

The existing (2010) plus project p.m. peak hour volumes were generated for the study intersections and are shown in Appendix D.

C. Level of Service Analysis

Using Synchro/SimTraffic, which follow the Highway Capacity Manual (HCM) 2000 methodology introduced in Chapter I, the p.m. peak hour LOS was computed for each study intersection. The results of this analysis are reported in Table 3 (see Appendix B for the detailed LOS reports). Multiple runs of SimTraffic were used to provide a statistical evaluation of the interaction between the intersections. As shown in Table 3, both study intersections experience failing levels of service.

D. Queuing Analysis

Queuing will occur on site when gaps are not available in the traffic stream. The average queue length is estimated to be approximately 70 feet (3 vehicles). However, the $95^{\text {th }}$ percentile queue length will be approximately 140 feet (7 vehicles). This will be long enough to cause some congestion internal to the site. The queue should not impede ingress traffic because vehicles entering the site can continue to the south to the hotel, or turn right (west) into the Chick-fil-A without being blocked. Vehicles exiting the Chick-fil-A will primarily exit from the south parking area because of the location of the end of the drive through. Therefore, queuing is less likely to impede this egress.

HALES(h)ENGINEERING
 innovative transportation solutions

E. Mitigation Measures

No mitigation measures are recommended.
By adding the project traffic, the LOS for the project access will degrade from LOS D to LOS E. Although vehicles are platooned quite well along 2100 South, and several large gaps do occur, there are still occasions when vehicles will need to wait on average longer than 35 seconds in order to turn left or right out of the development. This condition only impacts the subject property, which has been designed to accommodate the impacted vehicles. The LOS E does not impact through traffic or pedestrian movements along 2100 South.

Although queuing will occur on-site when gaps are not available in the 2100 South traffic stream, the site is sufficiently designed to accommodate the additional stacked vehicles. The average queue length is estimated to be approximately 70 feet or approximately 3 vehicles. However, the $95^{\text {th }}$ percentile (projected worst case) queue length will be approximately 140 feet or 7 vehicles which will be contained on-site.

Table 3 Existing (2010) Plus Project p.m. Peak Hour Level of Service

Intersection		Worst Approach			Overall Intersection	
Description	Control	Approach ${ }^{1,3}$	Aver. Delay (Sec/Veh) ${ }^{1}$	LOS 1	Aver. Delay (Sec/Veh) ${ }^{2}$	LOS ${ }^{2}$
Project Access / 2100 South	NB Stop	NB	49.2	E	3.4	A
1300 East/ 2100 South	Signal	-		-	74.7	E
1. This represents the worst approach LOS and delay (seconds / vehicle) and is only reported for non-all-way-stop unsignalized intersections. 2. This represents the overall intersection LOS and delay (seconds / vehicle). 3. $\mathrm{SB}=$ Southbound approach, etc. Source: Hales Engineering, February 2010						

HALES (\downarrow ENGINEERING innovative transportation solutions

APPENDIX A Turning Movement Counts

HALES (1)ENGINEERING innovative transportation solutions

APPENDIX B
 LOS Results

HALES (1)ENGINEERING

SimTraffic LOS Report

Project:
Analysis Period: Time Period:

SLC - Chick-fil-A TIS
Existing 2010 Background
PM Peak Hour
Project \#: UT10-213

Intersection: 2100 South \& 1200 East
Type: Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
SB	L	48	52	109	94.6	F
	R	52	53	102	68.7	F
	Subtotal	100	105	105	81.5	F
EB	L	44	44	99	11.4	B
	T	1,076	1,080	100	1.6	A
	Subtotal	1,120	1,124	100	2.0	A
WB	T	795	794	100	0.5	A
	R	39	43	110	0.3	A
	Subtotal	834	837	100	0.5	A
Total		2,054	2,066	101	5.4	A

Intersection:	2100 South \& Project Access
Type:	Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
NB	L	7	8	110	37.7	E
	R	19	20	107	22.5	C
	Subtotal	26	28	108	26.8	D
EB	T	1,113	1,119	101	1.2	A
	R	11	13	116	1.8	A
	Subtotal	1,124	1,132	101	1.2	A
WB	L	19	20	107	8.6	A
	T	828	830	100	0.4	A
	Subtotal	847	850	100	0.6	A
Total		1,996	2,010	101	1.3	A

HALES (1)ENGINEERING

SimTraffic LOS Report

Project:
Analysis Period: Time Period:

SLC - Chick-fil-A TIS
Existing 2010 Background
PM Peak Hour
Project \#: UT10-213

Intersection: 2100 South \& Douglas Street
Type:
Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
SB	L	12	11	90	60.8	F
	R	24	26	109	23.4	C
	Subtotal	36	37	103	34.5	D
EB	L	20	18	91	6.3	A
	T	1,112	1,121	101	3.0	A
	Subtotal	1,132	1,139	101	3.1	A
WB	T	822	824	100	1.7	A
	R	20	21	106	1.9	A
	Subtotal	842	845	100	1.7	A
Total		2,010	2,021	101	3.1	A

Intersection: 2100 South \& 1300 East
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
NB	L	242	240	99	73.3	E
	T	828	824	99	27.6	C
	R	727	708	97	11.3	B
	Subtotal	1,797	1,772	99	27.3	C
SB	L	67	66	98	122.2	F
	T	806	783	97	109.7	F
	R	84	85	101	116.8	F
	Subtotal	957	934	98	111.2	F
EB	L	128	131	102	76.4	E
	T	564	561	100	43.3	D
	R	433	440	102	37.7	D
	Subtotal	1,125	1,132	101	45.0	D
WB	L	486	440	91	215.9	F
	T	516	519	101	57.7	E
	R	63	60	95	56.5	E
	Subtotal	1,065	1,019	96	125.9	F
Total		4,944	4,857	98	68.7	E

1:2100 South \& 1200 East Performance by movement Interval \#1 5:00

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.0	0.0	0.1	0.0	0.3
Delay / Veh (s)	11.3	0.9	0.5	0.3	30.9	14.2	2.1
Vehicles Entered	11	255	188	11	13	11	489
Vehicles Exited	11	255	187	11	14	11	489
Hourly Exit Rate	44	1020	748	44	56	44	1956
Input Volume	43	1041	769	38	46	50	1987
\% of Volume	102	98	97	116	122	88	98

1: 2100 South \& 1200 East Performance by movement Interval \#2 5:15

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.2	0.0	0.0	0.3	0.3	0.9
Delay / Veh (s)	14.1	2.2	0.5	0.3	94.3	76.7	5.9
Vehicles Entered	12	300	212	10	14	15	563
Vehicles Exited	12	299	212	10	12	15	560
Hourly Exit Rate	48	1196	848	40	48	60	2240
Input Volume	48	1182	874	43	53	57	2257
\% of Volume	100	101	97	93	91	105	99

1: 2100 South \& 1200 East Performance by movement Interval \#3 5:30

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.2	0.0	0.0	0.6	0.4	1.2
Delay / Veh (s)	10.3	2.2	0.6	0.4	166.6	88.7	8.5
Vehicles Entered	11	269	205	12	14	14	525
Vehicles Exited	11	270	205	11	15	15	527
Hourly Exit Rate	44	1080	820	44	60	60	2108
Input Volume	43	1041	769	38	46	50	1987
\% of Volume	102	104	107	116	130	120	106

1: 2100 South \& 1200 East Performance by movement Interval \#4 5:45

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.0	0.0	0.3	0.3	0.7
Delay / Veh (s)	9.3	0.9	0.5	0.1	84.2	83.7	4.8
Vehicles Entered	9	256	190	11	11	12	489
Vehicles Exited	10	256	190	11	12	13	492
Hourly Exit Rate	40	1024	760	44	48	52	1968
Input Volume	43	1041	769	38	46	50	1987
\% of Volume	93	98	99	116	104	104	99

1:2100 South \& 1200 East Performance by movement Entire Run

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.1	0.5	0.1	0.0	1.4	1.0	3.1
Delay / Veh (s)	11.4	1.6	0.5	0.3	94.6	68.7	5.4
Vehicles Entered	43	1081	795	43	52	53	2067
Vehicles Exited	44	1080	794	43	52	53	2066
Hourly Exit Rate	44	1080	794	43	52	53	2066
Input Volume	44	1076	795	39	48	52	2054
\% of Volume	99	100	100	110	109	102	101

2: 2100 South \& Project Access Performance by movement Interval \#1 5:00

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Delay / Veh (s)	0.5	0.6	7.9	0.4	27.7	9.9	0.8
Vehicles Entered	265	3	6	198	2	6	480
Vehicles Exited	266	3	6	197	2	6	480
Hourly Exit Rate	1064	12	24	788	8	24	1920
Input Volume	1076	11	18	800	7	18	1930
\% of Volume	99	109	133	98	114	133	99

2: 2100 South \& Project Access Performance by movement Interval \#2 5:15

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.1	0.0	0.0	0.0	0.0	0.0	0.2
Delay / Veh (s)	1.7	3.0	12.0	0.5	44.9	19.2	1.6
Vehicles Entered	308	3	4	218	2	5	540
Vehicles Exited	307	3	5	220	2	5	542
Hourly Exit Rate	1228	12	20	880	8	20	2168
Input Volume	1224	12	21	910	8	21	2196
\% of Volume	100	100	95	97	100	95	99

2: 2100 South \& Project Access Performance by movement Interval \#3 5:30

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.2	0.0	0.0	0.0	0.0	0.1	0.3
Delay / Veh (s)	2.1	3.9	8.2	0.5	56.4	52.1	2.2
Vehicles Entered	282	3	4	216	2	5	512
Vehicles Exited	283	3	4	215	2	5	512
Hourly Exit Rate	1132	12	16	860	8	20	2048
Input Volume	1076	11	18	800	7	18	1930
\% of Volume	105	109	89	108	114	111	106

2: 2100 South \& Project Access Performance by movement Interval \#4 5:45

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Delay / Veh (s)	0.3	0.1	6.3	0.4	21.6	6.8	0.6
Vehicles Entered	264	4	5	198	2	5	478
Vehicles Exited	264	4	5	199	2	5	479
Hourly Exit Rate	1056	16	20	796	8	20	1916
Input Volume	1076	11	18	800	7	18	1930
\% of Volume	98	145	111	100	114	111	99

2: 2100 South \& Project Access Performance by movement Entire Run

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.4	0.0	0.0	0.1	0.1	0.1	0.7
Delay / Veh (s)	1.2	1.8	8.6	0.4	37.7	22.5	1.3
Vehicles Entered	1119	13	20	830	8	20	2010
Vehicles Exited	1119	13	20	830	8	20	2010
Hourly Exit Rate	1119	13	20	830	8	20	2010
Input Volume	1113	11	19	828	7	19	1996
\% of Volume	101	116	107	100	110	107	101

3: 2100 South \& Douglas Street Performance by movement Interval \#1 5:00

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.1	0.0	0.0	0.0	0.2
Delay / Veh (s)	7.1	1.5	1.6	1.6	20.2	8.7	1.8
Vehicles Entered	4	267	198	4	2	6	481
Vehicles Exited	4	266	198	4	2	6	480
Hourly Exit Rate	16	1064	792	16	8	24	1920
Input Volume	19	1075	795	19	12	23	1943
\% of Volume	84	99	100	84	67	104	99

3: 2100 South \& Douglas Street Performance by movement Interval \#2 5:15

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.4	0.1	0.0	0.0	0.0	0.6
Delay / Veh (s)	6.4	4.8	1.7	1.7	60.3	16.0	3.9
Vehicles Entered	6	304	215	6	2	6	539
Vehicles Exited	6	302	216	6	2	6	538
Hourly Exit Rate	24	1208	864	24	8	24	2152
Input Volume	22	1222	904	22	13	26	2209
\% of Volume	109	99	96	109	62	92	97

3: 2100 South \& Douglas Street Performance by movement Interval \#3 5:30

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.4	0.1	0.0	0.1	0.1	0.7
Delay / Veh (s)	7.1	4.5	1.8	1.8	112.3	55.9	4.7
Vehicles Entered	3	285	215	6	3	8	520
Vehicles Exited	4	287	214	6	3	6	520
Hourly Exit Rate	16	1148	856	24	12	24	2080
Input Volume	19	1075	795	19	12	23	1943
\% of Volume	84	107	108	126	100	104	107

3: 2100 South \& Douglas Street Performance by movement Interval \#4 5:45

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.1	0.0	0.0	0.0	0.2
Delay / Veh (s)	4.6	0.9	1.6	2.5	42.7	9.9	1.7
Vehicles Entered	4	265	195	5	4	6	479
Vehicles Exited	4	265	196	5	4	7	481
Hourly Exit Rate	16	1060	784	20	16	28	1924
Input Volume	19	1075	795	19	12	23	1943
\% of Volume	84	99	99	105	133	122	99

3: 2100 South \& Douglas Street Performance by movement Entire Run

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.9	0.4	0.0	0.2	0.2	1.7
Delay / Veh (s)	6.3	3.0	1.7	1.9	60.8	23.4	3.1
Vehicles Entered	18	1121	823	21	11	26	2020
Vehicles Exited	18	1121	824	21	11	26	2021
Hourly Exit Rate	18	1121	824	21	11	26	2021
Input Volume	20	1112	822	20	12	24	2010
\% of Volume	91	101	100	106	90	109	101

4: 2100 South \& 1300 East Performance by movement Interval \#1 5:00

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.4	1.5	0.9	2.5	1.3	0.1	0.8	1.6	0.5	0.3	2.5
Delay / Veh (s)	56.1	39.2	30.8	82.0	35.9	32.5	54.3	28.1	10.7	68.6	49.9
Vehicles Entered	29	136	104	116	123	15	55	206	176	16	187
Vehicles Exited	26	146	105	105	129	16	57	208	174	15	176
Hourly Exit Rate	104	584	420	420	516	64	228	832	696	60	704
Input Volume	124	545	419	470	499	61	234	801	703	65	779
\% of Volume	84	107	100	89	103	105	97	104	99	92	90

4: 2100 South \& 1300 East Performance by movement Interval \#1 5:00

Movement	All
Total Delay (hr)	12.8
Delay / Veh (s)	39.0
Vehicles Entered	1183
Vehicles Exited	1175
Hourly Exit Rate	4700
Input Volume	4781
\% of Volume	98

4: 2100 South \& 1300 East Performance by movement Interval \#2 5:15

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.9	2.0	1.5	5.7	2.0	0.2	1.6	1.8	0.8	0.5	5.6
Delay / Veh (s)	85.9	50.1	46.6	170.8	50.6	45.0	86.4	28.7	14.0	105.6	95.5
Vehicles Entered	36	150	118	127	145	17	69	223	196	18	213
Vehicles Exited	37	140	110	115	134	15	62	219	197	18	207
Hourly Exit Rate	148	560	440	460	536	60	248	876	788	72	828
Input Volume	141	619	476	534	567	69	266	910	799	74	886
\% of Volume	105	90	92	86	95	87	93	96	99	97	93

4: 2100 South \& 1300 East Performance by movement Interval \#2 5:15

Movement	All
Total Delay (hr)	23.1
Delay / Veh (s)	63.6
Vehicles Entered	1336
Vehicles Exited	1278
Hourly Exit Rate	5112
Input Volume	5433
$\%$ of Volume	94

4: 2100 South \& 1300 East Performance by movement Interval \#3 5:30

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
SBR											
Total Delay (hr)	0.8	1.6	1.4	8.6	2.0	0.3	1.3	1.5	0.5	0.8	8.5
Delay / Veh (s)	89.8	38.9	40.7	293.6	54.2	60.1	79.0	27.0	10.2	181.7	160.8
Vehicles Entered	35	139	117	111	128	16	57	200	169	16	190
Vehicles Exited	34	148	124	102	137	17	62	205	171	15	192
Hourly Exit Rate	136	592	496	408	548	68	248	820	684	60	768
Input Volume	124	545	419	470	499	61	234	801	703	65	779
\% of Volume	110	109	118	87	110	111	106	102	97	92	99

4: 2100 South \& 1300 East Performance by movement Interval \#3 5:30

Movement	All
Total Delay (hr)	28.4
Delay / Veh (s)	84.0
Vehicles Entered	1200
Vehicles Exited	1229
Hourly Exit Rate	4916
Input Volume	4781
$\%$ of Volume	103

4: 2100 South \& 1300 East Performance by movement Interval \#4 5:45

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.7	1.6	0.9	10.3	3.1	0.3	1.2	1.4	0.5	0.7	7.5
Delay / Veh (s)	71.0	45.0	30.9	320.8	92.2	93.8	71.0	26.2	10.0	133.9	129.1
Vehicles Entered	32	135	103	113	125	13	61	195	167	17	208
Vehicles Exited	34	127	100	118	119	13	58	192	166	18	210
Hourly Exit Rate	136	508	400	472	476	52	232	768	664	72	840
Input Volume	124	545	419	470	499	61	234	801	703	65	779
\% of Volume	110	93	95	100	95	85	99	96	94	111	108

4: 2100 South \& 1300 East Performance by movement Interval \#4 5:45

Movement	All
Total Delay (hr)	29.0
Delay / Veh (s)	88.2
Vehicles Entered	1190
Vehicles Exited	1177
Hourly Exit Rate	4708
Input Volume	4781
\% of Volume	98

4: 2100 South \& 1300 East Performance by movement Entire Run

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	2.8	6.8	4.6	27.2	8.3	0.9	4.9	6.3	2.2	2.2	24.1	2.8
Delay / Veh (s)	76.4	43.3	37.7	215.9	57.7	56.5	73.3	27.6	11.3	122.2	109.7	116.8
Vehicles Entered	131	561	442	468	521	60	242	824	708	67	799	88
Vehicles Exited	131	561	440	440	519	60	240	824	708	66	783	85
Hourly Exit Rate	131	561	440	440	519	60	240	824	708	66	783	85
Input Volume	128	564	433	486	516	63	242	828	727	67	806	84
\% of Volume	102	100	102	91	101	95	99	99	97	98	97	101

4: 2100 South \& 1300 East Performance by movement Entire Run

Movement	All
Total Delay (hr)	93.2
Delay / Veh (s)	68.7
Vehicles Entered	4911
Vehicles Exited	4857
Hourly Exit Rate	4857
Input Volume	4944
\% of Volume	98

Total Network Performance By Interval

Interval Start	$5: 00$	$5: 15$	$5: 30$	$5: 45$	All
Total Delay (hr)	13.9	25.4	31.1	30.5	100.9
Delay / Veh (s)	41.3	67.5	89.5	89.6	72.0
Vehicles Entered	1220	1389	1235	1225	5073
Vehicles Exited	1207	1324	1266	1222	5018
Hourly Exit Rate	4828	5296	5064	4888	5018
Input Volume	15574	17702	15574	15574	16106
\% of Volume	31	30	33	31	31

Intersection: 1:2100 South \& 1200 East, Interval \#1

Movement	EB	EB	WB	SB
Directions Served	L	T	TR	LR
Maximum Queue (ft)	43	10	4	91
Average Queue (ft)	18	2	1	54
95th Queue (ft)	48	21	7	101
Link Distance (ft)		422	127	465
Upstream Blk Time (\%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	1			
Queuing Penalty (veh)	3			

Intersection: 1:2100 South \& 1200 East, Interval \#2

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	50	26	61	8	192
Average Queue (ft)	20	7	24	1	110
95th Queue (ft)	54	69	126	13	261
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					1
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	2	0			
Queuing Penalty (veh)	11	0			

Intersection: 1:2100 South \& 1200 East, Interval \#3

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	37	17	61	8	215
Average Queue (ft)	20	4	29	1	137
95th Queue (ft)	46	45	147	13	373
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					6
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	0				
Queuing Penalty (veh)	2				

Intersection: 1:2100 South \& 1200 East, Interval \#4

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	40	150
Average Queue (tt)	18	89
95th Queue (tt)	47	283
Link Distance (ft)		465
Upstream Blk Time (\%)		2
Queuing Penalty (veh)		0
Storage Bay Dist (tt)	50	
Storage Blk Time (\%)	0	
Queuing Penalty (veh)	2	

Intersection: 1:2100 South \& 1200 East, All Intervals

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	60	26	76	20	263
Average Queue (ft)	19	3	14	1	97
95th Queue (ft)	49	40	95	10	276
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					2
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	1	0			
Queuing Penalty (veh)	4	0			

Intersection: 2: 2100 South \& Project Access, Interval \#1

Movement	EB	EB	WB	NB
Directions Served	T	TR	L	LR
Maximum Queue (ft)	8	20	32	44
Average Queue (ft)	1	6	13	23
95th Queue (ft)	18	48	39	51
Link Distance (ft)	127	127		143
Upstream Blk Time (\%)		0		
Queuing Penalty (veh)		1		
Storage Bay Dist (ft)			50	
Storage Blk Time (\%)			0	
Queuing Penalty (veh)			1	

Intersection: 2: 2100 South \& Project Access, Interval \#2

Movement	EB	EB	WB	NB
Directions Served	T	TR	L	LR
Maximum Queue (ft)	26	59	35	55
Average Queue (tt)	7	30	13	27
95th Queue (tt)	49	121	39	63
Link Distance (tt)	127	127		143
Upstream Blk Time (\%)	0	5		
Queuing Penalty (veh)	1	29		
Storage Bay Dist (tt)			50	
Storage Blk Time (\%)			0	
Queuing Penalty (veh)			1	

Intersection: 2: 2100 South \& Project Access, Interval \#3

Movement	EB	EB	WB	NB
Directions Served	T	TR	L	LR
Maximum Queue (ft)	36	50	30	59
Average Queue (ft)	11	35	10	27
95th Queue (ft)	66	133	33	78
Link Distance (ft)	127	127		143
Upstream Blk Time (\%)	0	6		0
Queuing Penalty (veh)	0	31		0
Storage Bay Dist (ft)			50	
Storage Blk Time (\%)			0	
Queuing Penalty (veh)			1	

Intersection: 2: 2100 South \& Project Access, Interval \#4

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	33	40
Average Queue (ft)	11	21
95th Queue (ft)	37	50
Link Distance (ft)		143
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	50	
Storage Blk Time (\%)	0	
Queuing Penalty (veh)	1	

Intersection: 2: 2100 South \& Project Access, All Intervals

Movement	EB	EB	WB	NB
Directions Served	T	TR	L	LR
Maximum Queue (ft)	45	80	44	70
Average Queue (ft)	5	18	12	24
95th Queue (ft)	41	92	37	62
Link Distance (ft)	127	127		143
Upstream Blk Time (\%)	0	3		0
Queuing Penalty (veh)	0	15		0
Storage Bay Dist (ft)			50	
Storage Blk Time (\%)			0	
Queuing Penalty (veh)			1	

Intersection: 3: 2100 South \& Douglas Street, Interval \#1

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	28	38	83	36
Average Queue (ft)	9	7	23	25
95th Queue (ft)	31	56	104	47
Link Distance (ft)		173	173	432
Upstream Blk Time (\%)			1	
Queuing Penalty (veh)			6	
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	0	0		
Queuing Penalty (veh)	0	0		

Intersection: 3: 2100 South \& Douglas Street, Interval \#2

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	31	109	151	50
Average Queue (ft)	10	48	87	26
95th Queue (ft)	34	152	211	57
Link Distance (ft)		173	173	432
Upstream Blk Time (\%)		0	7	
Queuing Penalty (veh)		2	42	
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	0	3		
Queuing Penalty (veh)	0	1		

Intersection: 3: 2100 South \& Douglas Street, Interval \#3

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	31	114	146	5	76
Average Queue (tt)	7	33	77	1	42
95th Queue (ft)	28	126	204	8	107
Link Distance (ft)		173	173	324	432
Upstream Blk Time (\%)		0	9		
Queuing Penalty (veh)		0	47		
Storage Bay Dist (tt)	50				
Storage Blk Time (\%)	0	1			
Queuing Penalty (veh)	0	0			

Intersection: 3: 2100 South \& Douglas Street, Interval \#4

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	28	24	85	70
Average Queue (ft)	7	4	18	32
95th Queue (ft)	28	34	88	77
Link Distance (ft)		173	173	432
Upstream Blk Time (\%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	0	0		
Queuing Penalty (veh)	0	0		

Intersection: 3: 2100 South \& Douglas Street, All Intervals

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	31	144	178	5	93
Average Queue (ft)	8	23	51	0	31
95th Queue (ft)	31	104	167	4	77
Link Distance (ft)		173	173	324	432
Upstream Blk Time (\%)		0	4		
Queuing Penalty (veh)		1	24		
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	0	1			
Queuing Penalty (veh)	0	0			

Intersection: 4: 2100 South \& 1300 East, Interval \#1

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	L	T	TR	L	T	T
R											
Maximum Queue (ft)	163	296	330	195	252	269	227	239	212	289	289
Average Queue (ft)	95	208	262	181	183	199	155	179	144	188	207
95th Queue (ft)	177	321	376	230	282	295	238	253	226	299	305
(ft)		324	324				768	768		749	749
Link Distance	749										
Upstream Blk Time (\%)		0	5								
Queuing Penalty (veh)		1	29								
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	7	27	33	29	0	1			2	3	
Queuing Penalty (veh)	18	34	136	79	1	2			8	8	

Intersection: 4: 2100 South \& 1300 East, Interval \#1

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	98	407	424
Average Queue (ft)	51	283	304
95th Queue (ft)	109	442	454
Link Distance (ft)		474	474
Upstream Blk Time (\%)		0	1
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	6	55	
Queuing Penalty (veh)	22	36	

Intersection: 4: 2100 South \& 1300 East, Interval \#2

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	TR	L	T	T	R
Maximum Queue (ft)	194	337	342	195	404	483	431	376	309	303	337	268
Average Queue (ft)	133	258	301	185	309	342	230	213	220	217	241	141
95th Queue (ft)	221	391	399	229	471	555	554	431	353	322	354	265
Link Distance (ft)		324	324				768	768		749	749	749
Upstream Blk Time (\%)		5	18				2	0				
Queuing Penalty (veh)		33	108				0	0				
Storage Bay Dist (ft)	115			115	310	310			220			
Storage Blk Time (\%)	28	34	37	49	28	31	0		20	5		
Queuing Penalty (veh)	88	48	178	151	80	88	2		89	13		

Intersection: 4: 2100 South \& 1300 East, Interval \#2

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	124	477	475
Average Queue (ft)	58	417	423
95th Queue (ft)	129	545	540
Link Distance (ft)		474	474
Upstream Blk Time (\%)		20	23
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	9	64	
Queuing Penalty (veh)	41	47	

Intersection: 4: 2100 South \& 1300 East, Interval \#3

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
irections Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	194	332	336	195	426	540	629	535	301	270	282
R											
Average Queue (ft)	135	252	299	188	402	501	525	315	203	180	198
95th Queue (ft)	233	363	397	216	539	717	959	649	332	275	287
202											
Link Distance (ft)		324	324				768	768		749	749
Upstream Blk Time (\%)		2	16				10	0			
Queuing Penalty (veh)		11	89				0	0			
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	31	26	31	44	63	68	0		16	3	
Queuing Penalty (veh)	85	32	131	119	158	168	1		65	7	

Intersection: 4: 2100 South \& 1300 East, Interval \#3

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	112	490	484
Average Queue (ft)	50	456	459
95th Queue (ft)	116	566	562
Link Distance (ft)		474	474
Upstream Blk Time (\%)		38	44
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	7	69	
Queuing Penalty (veh)	26	45	

Intersection: 4: 2100 South \& 1300 East, Interval \#4

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
irections Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	184	311	335	195	431	543	667	646	253	299	311
R											
Average Queue (ft)	115	211	244	161	409	510	534	325	179	176	194
95th Queue (ft)	202	337	378	241	519	698	1019	741	304	295	308
Link Distance (ft)		324	324				768	768		749	749
Upstream Blk Time (\%)		0	3				18	0			
Queuing Penalty (veh)		3	18				0	0			
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	20	28	34	28	69	72	0		10	3	
Queuing Penalty (veh)	55	34	141	75	172	179	0		38	7	

Intersection: 4: 2100 South \& 1300 East, Interval \#4

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	122	493	499
Average Queue (ft)	57	466	472
95th Queue (ft)	127	564	560
Link Distance (ft)		474	474
Upstream Blk Time (\%)		32	36
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	8	65	
Queuing Penalty (veh)	31	42	

Intersection: 4: 2100 South \& 1300 East, All Intervals

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	194	354	348	195	432	543	676	660	332	338	352
R											
Average Queue (ft)	120	232	277	179	326	388	361	258	187	190	210
109											
95th Queue (ft)	212	359	395	235	524	669	823	567	315	301	318
ink Distance (ft)		324	324				768	768		749	749
Upstream Blk Time (\%)		2	11				7	0			
Queuing Penalty (veh)		12	61				0	0			
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	22	29	34	37	40	43	0		12	4	
Queuing Penalty (veh)	61	37	147	106	103	109	1		50	9	

Intersection: 4: 2100 South \& 1300 East, All Intervals

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	149	501	501
Average Queue (ft)	54	405	414
95th Queue (ft)	121	580	575
Link Distance (ft)		474	474
Upstream Blk Time (\%)		23	26
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	7	63	
Queuing Penalty (veh)	30	42	

Network Summary

Network wide Queuing Penalty, Interval \#1: 386
Network wide Queuing Penalty, Interval \#2: 1054
Network wide Queuing Penalty, Interval \#3: 1019
Network wide Queuing Penalty, Interval \#4: 797
Network wide Queuing Penalty, All Intervals: 814

SimTraffic LOS Report

Project:
Analysis Period: Time Period:

SLC - Chick-fil-A TIS
Existing 2010 Plus Project
PM Peak Hour
Project \#: UT10-213

Intersection: 2100 South \& 1200 East
Type: Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
SB	L	48	47	98	49.7	E
	R	52	51	99	27.2	D
	Subtotal	100	98	98	38.0	E
EB	L	44	46	104	11.6	B
	T	1,085	1,095	101	1.3	A
	Subtotal	1,129	1,141	101	1.7	A
WB	T	805	790	98	0.5	A
	R	39	39	99	0.3	A
	Subtotal	844	829	98	0.5	A
Total		2,072	2,068	100	2.9	A

Intersection:	2100 South \& Project Access
Type:	Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
NB	L	34	33	97	59.4	F
	R	68	67	98	44.2	E
	Subtotal	102	100	98	49.2	E
EB	T	1,088	1,097	101	1.1	A
	R	45	46	102	1.0	A
	Subtotal	1,133	1,143	101	1.1	A
WB	L	58	54	93	11.6	B
	T	810	797	98	0.5	A
	Subtotal	868	851	98	1.2	A
Total		2,104	2,094	100	3.4	A

HALES $($ ENGINEERING
 innovative transportation solutions

SimTraffic LOS Report

Project:
SLC - Chick-fil-A TIS
Existing 2010 Plus Project
Analysis Period:
Time Period:
PM Peak Hour
Project \#: UT10-213

Intersection: 2100 South \& Douglas Street
Type: Unsignalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
SB	L	12	11	90	63.0	F
	R	24	24	101	22.0	C
	Subtotal	36	35	97	34.9	D
EB	L	20	19	96	6.5	A
	T	1,136	1,144	101	2.9	A
	Subtotal	1,156	1,163	101	3.0	A
WB	T	845	828	98	1.7	A
	R	20	20	101	1.7	A
	Subtotal	865	848	98	1.7	A
Total		2,057	2,046	99	3.0	A

Intersection: 2100 South \& 1300 East
Type:
Signalized

Approach	Movement	Demand Volume	Volume Served		Delay/Veh (sec)	
			Avg	\%	Avg	LOS
NB	L	248	244	98	109.4	F
	T	828	830	100	28.1	C
	R	727	731	101	12.4	B
	Subtotal	1,803	1,805	100	32.7	C
SB	L	67	63	94	118.2	F
	T	806	800	99	105.1	F
	R	87	88	101	107.3	F
	Subtotal	960	951	99	106.2	F
EB	L	132	135	102	84.5	F
	T	578	584	101	44.6	D
	R	439	435	99	36.0	D
	Subtotal	1,149	1,154	100	46.0	D
WB	L	486	445	92	245.8	F
	T	529	515	97	75.5	E
	R	63	63	100	72.9	E
	Subtotal	1,078	1,023	95	149.4	F
Total		4,991	4,933	99	74.7	E

1:2100 South \& 1200 East Performance by movement Interval \#1 5:00

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.0	0.0	0.1	0.1	0.3
Delay / Veh (s)	11.7	1.1	0.5	0.3	37.9	20.6	2.3
Vehicles Entered	11	269	196	10	12	12	510
Vehicles Exited	11	269	196	10	11	11	508
Hourly Exit Rate	44	1076	784	40	44	44	2032
Input Volume	43	1049	778	38	46	50	2004
\% of Volume	102	103	101	105	96	88	101

1: 2100 South \& 1200 East Performance by movement Interval \#2 5:15

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.2	0.0	0.0	0.2	0.1	0.6
Delay / Veh (s)	13.5	1.9	0.5	0.3	67.9	32.8	4.0
Vehicles Entered	13	299	207	10	13	15	557
Vehicles Exited	13	298	207	10	13	14	555
Hourly Exit Rate	52	1192	828	40	52	56	2220
Input Volume	48	1192	885	43	53	57	2278
\% of Volume	108	100	94	93	98	98	97

1: 2100 South \& 1200 East Performance by movement Interval \#3 5:30

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.0	0.0	0.2	0.1	0.4
Delay / Veh (s)	10.6	1.2	0.5	0.3	49.0	35.0	3.1
Vehicles Entered	10	261	196	9	11	12	499
Vehicles Exited	10	262	196	9	12	13	502
Hourly Exit Rate	40	1048	784	36	48	52	2008
Input Volume	43	1049	778	38	46	50	2004
\% of Volume	93	100	101	95	104	104	100

1: 2100 South \& 1200 East Performance by movement Interval \#4 5:45

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.0	0.0	0.1	0.1	0.3
Delay / Veh (s)	11.3	1.0	0.5	0.3	40.7	17.7	2.3
Vehicles Entered	11	266	191	10	11	12	501
Vehicles Exited	11	266	192	10	11	12	502
Hourly Exit Rate	44	1064	768	40	44	48	2008
Input Volume	43	1049	778	38	46	50	2004
\% of Volume	102	101	99	105	96	96	100

1:2100 South \& 1200 East Performance by movement Entire Run

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.1	0.4	0.1	0.0	0.6	0.4	1.7
Delay / Veh (s)	11.6	1.3	0.5	0.3	49.7	27.2	2.9
Vehicles Entered	46	1095	791	39	47	51	2069
Vehicles Exited	46	1095	790	39	47	51	2068
Hourly Exit Rate	46	1095	790	39	47	51	2068
Input Volume	44	1085	805	39	48	52	2072
\% of Volume	104	101	98	99	98	99	100

2: 2100 South \& Project Access Performance by movement Interval \#1 5:00

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.1	0.0	0.0	0.0	0.1	0.1	0.3
Delay / Veh (s)	0.7	0.4	10.0	0.5	44.8	25.2	2.3
Vehicles Entered	269	12	13	199	8	16	517
Vehicles Exited	269	12	13	197	9	16	516
Hourly Exit Rate	1076	48	52	788	36	64	2064
Input Volume	1052	44	56	783	33	66	2034
\% of Volume	102	109	93	101	109	97	101

2: 2100 South \& Project Access Performance by movement Interval \#2 5:15

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.1	0.0	0.1	0.0	0.2	0.4	0.8
Delay / Veh (s)	1.8	2.1	15.0	0.6	87.1	74.7	5.3
Vehicles Entered	300	11	15	208	9	19	562
Vehicles Exited	299	11	15	209	8	17	559
Hourly Exit Rate	1196	44	60	836	32	68	2236
Input Volume	1196	49	64	891	37	75	2312
\% of Volume	100	90	94	94	86	91	97

2: 2100 South \& Project Access Performance by movement Interval \#3 5:30

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.1	0.0	0.0	0.0	0.2	0.2	0.6
Delay / Veh (s)	1.1	1.2	11.8	0.5	71.9	49.6	4.0
Vehicles Entered	263	11	13	199	8	17	511
Vehicles Exited	264	11	13	197	8	18	511
Hourly Exit Rate	1056	44	52	788	32	72	2044
Input Volume	1052	44	56	783	33	66	2034
\% of Volume	100	100	93	101	97	109	100

2: 2100 South \& Project Access Performance by movement Interval \#4 5:45

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.0	0.0	0.0	0.0	0.1	0.1	0.3
Delay / Veh (s)	0.6	0.4	8.9	0.5	41.4	20.0	2.0
Vehicles Entered	266	12	13	192	8	16	507
Vehicles Exited	266	12	13	193	8	16	508
Hourly Exit Rate	1064	48	52	772	32	64	2032
Input Volume	1052	44	56	783	33	66	2034
\% of Volume	101	109	93	99	97	97	100

2: 2100 South \& Project Access Performance by movement Entire Run

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Total Delay (hr)	0.3	0.0	0.2	0.1	0.5	0.8	2.0
Delay / Veh (s)	1.1	1.0	11.6	0.5	59.4	44.2	3.4
Vehicles Entered	1097	46	55	797	32	67	2094
Vehicles Exited	1097	46	54	797	33	67	2094
Hourly Exit Rate	1097	46	54	797	33	67	2094
Input Volume	1088	45	58	810	34	68	2104
\% of Volume	101	102	93	98	97	98	100

3: 2100 South \& Douglas Street Performance by movement Interval \#1 5:00

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.1	0.0	0.0	0.0	0.3
Delay / Veh (s)	6.3	1.6	1.6	1.6	48.8	17.4	2.1
Vehicles Entered	5	280	206	5	3	6	505
Vehicles Exited	5	280	206	5	3	6	505
Hourly Exit Rate	20	1120	824	20	12	24	2020
Input Volume	19	1099	817	19	12	23	1989
\% Volume	105	102	101	105	100	104	102

3: 2100 South \& Douglas Street Performance by movement Interval \#2 5:15

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.4	0.1	0.0	0.1	0.0	0.6
Delay / Veh (s)	7.6	5.1	1.8	1.9	62.4	21.5	4.3
Vehicles Entered	5	311	216	5	3	6	546
Vehicles Exited	5	307	217	5	3	6	543
Hourly Exit Rate	20	1228	868	20	12	24	2172
Input Volume	22	1249	928	22	13	26	2260
\% of Volume	91	98	94	91	92	92	96

3: 2100 South \& Douglas Street Performance by movement Interval \#3 5:30

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.3	0.1	0.0	0.1	0.1	0.5
Delay / Veh (s)	5.3	3.4	1.7	1.7	85.7	30.7	3.6
Vehicles Entered	5	277	207	5	3	6	503
Vehicles Exited	5	282	206	5	3	7	508
Hourly Exit Rate	20	1128	824	20	12	28	2032
Input Volume	19	1099	817	19	12	23	1989
\% of Volume	105	103	101	105	100	122	102

3: 2100 South \& Douglas Street Performance by movement Interval \#4 5:45

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.1	0.1	0.0	0.0	0.0	0.3
Delay / Veh (s)	6.6	1.4	1.6	2.0	34.1	13.3	1.9
Vehicles Entered	4	277	199	4	3	6	493
Vehicles Exited	4	275	199	4	3	6	491
Hourly Exit Rate	16	1100	796	16	12	24	1964
Input Volume	19	1099	817	19	12	23	1989
\% of Volume	84	100	97	84	100	104	99

3: 2100 South \& Douglas Street Performance by movement Entire Run

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Total Delay (hr)	0.0	0.9	0.4	0.0	0.2	0.1	1.7
Delay / Veh (s)	6.5	2.9	1.7	1.7	63.0	22.0	3.0
Vehicles Entered	19	1145	828	19	12	24	2047
Vehicles Exited	19	1144	828	20	11	24	2046
Hourly Exit Rate	19	1144	828	20	11	24	2046
Input Volume	20	1136	845	20	12	24	2057
\% of Volume	96	101	98	101	90	101	99

4: 2100 South \& 1300 East Performance by movement Interval \#1 5:00

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.6	1.7	0.9	3.2	1.3	0.2	1.1	1.5	0.5	0.3	2.8
Delay / Veh (s)	71.3	39.9	29.6	103.6	36.6	36.4	67.5	27.1	11.0	68.9	53.1
Vehicles Entered	33	144	106	116	127	14	58	199	177	16	193
Vehicles Exited	31	154	110	105	132	15	59	201	176	15	182
Hourly Exit Rate	124	616	440	420	528	60	236	804	704	60	728
Input Volume	128	559	425	470	512	61	240	801	703	65	779
\% of Volume	97	110	104	89	103	98	98	100	100	92	93

4: 2100 South \& 1300 East Performance by movement Interval \#1 5:00

Movement	All
Total Delay (hr)	14.3
Delay / Veh (s)	42.9
Vehicles Entered	1204
Vehicles Exited	1200
Hourly Exit Rate	4800
Input Volume	4827
$\%$ of Volume	99

4: 2100 South \& 1300 East Performance by movement Interval \#2 5:15

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	1.0	2.1	1.4	6.7	2.2	0.2	2.2	1.8	0.8	0.5	5.9
Delay / Veh (s)	93.3	50.9	43.0	196.1	55.9	50.6	117.4	28.2	14.4	117.5	98.8
Vehicles Entered	37	156	117	129	144	16	71	227	199	16	219
Vehicles Exited	38	143	111	117	137	15	62	223	198	15	211
Hourly Exit Rate	152	572	444	468	548	60	248	892	792	60	844
Input Volume	145	634	482	534	581	69	273	910	799	74	886
\% of Volume	105	90	92	88	94	87	91	98	99	81	95

4: 2100 South \& 1300 East Performance by movement Interval \#2 5:15

Movement	All
Total Delay (hr)	25.3
Delay / Veh (s)	69.0
Vehicles Entered	1355
Vehicles Exited	1293
Hourly Exit Rate	5172
Input Volume	5483
$\%$ of Volume	94

4: 2100 South \& 1300 East Performance by movement Interval \#3 5:30

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.8	1.8	1.1	10.2	3.1	0.4	2.3	1.7	0.6	0.7	8.2
Delay / Veh (s)	91.6	42.3	36.8	340.9	91.2	91.0	136.5	29.5	11.7	161.6	154.4
Vehicles Entered	33	144	108	112	120	16	58	200	176	16	192
Vehicles Exited	32	156	114	104	127	17	64	206	176	16	192
Hourly Exit Rate	128	624	456	416	508	68	256	824	704	64	768
Input Volume	128	559	425	470	512	61	240	801	703	65	779
\% of Volume	100	112	107	89	99	111	107	103	100	98	99

4: 2100 South \& 1300 East Performance by movement Interval \#3 5:30

Movement	All
Total Delay (hr)	31.9
Delay / Veh (s)	94.9
Vehicles Entered	1196
Vehicles Exited	1225
Hourly Exit Rate	4900
Input Volume	4827
$\%$ of Volume	102

4: 2100 South \& 1300 East Performance by movement Interval \#4 5:45

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Total Delay (hr)	0.7	1.7	1.0	11.2	4.2	0.5	1.9	1.5	0.6	0.6	6.6
Delay / Veh (s)	75.1	45.6	34.2	344.1	124.4	111.2	114.4	27.4	12.3	121.5	112.8
Vehicles Entered	32	141	105	114	125	16	60	205	180	16	205
Vehicles Exited	34	132	100	119	120	16	59	201	180	17	215
Hourly Exit Rate	136	528	400	476	480	64	236	804	720	68	860
Input Volume	128	559	425	470	512	61	240	801	703	65	779
\% of Volume	106	94	94	101	94	105	98	100	102	105	110

4: 2100 South \& 1300 East Performance by movement Interval \#4 5:45

Movement	All
Total Delay (hr)	31.2
Delay / Veh (s)	92.1
Vehicles Entered	1222
Vehicles Exited	1217
Hourly Exit Rate	4868
Input Volume	4827
$\%$ of Volume	101

4: 2100 South \& 1300 East Performance by movement Entire Run

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	3.2	7.2	4.4	31.3	10.8	1.3	7.4	6.5	2.5	2.1	23.5	2.7
Delay / Veh (s)	84.5	44.6	36.0	245.8	75.5	72.9	109.4	28.1	12.4	118.2	105.1	107.3
Vehicles Entered	135	585	437	471	516	63	247	830	731	64	809	89
Vehicles Exited	135	584	435	445	515	63	244	830	731	63	800	88
Hourly Exit Rate	135	584	435	445	515	63	244	830	731	63	800	88
Input Volume	132	578	439	486	529	63	248	828	727	67	806	87
\% of Volume	102	101	99	92	97	100	98	100	101	94	99	101

4: 2100 South \& 1300 East Performance by movement Entire Run

Movement	All
Total Delay (hr)	102.8
Delay / Veh (s)	74.7
Vehicles Entered	4977
Vehicles Exited	4933
Hourly Exit Rate	4933
Input Volume	4991
$\%$ of Volume	99

Total Network Performance By Interval

Interval Start	$5: 00$	$5: 15$	$5: 30$	$5: 45$	All
Total Delay (hr)	15.8	28.0	34.0	32.6	110.4
Delay / Veh (s)	45.3	72.9	97.2	92.1	76.8
Vehicles Entered	1258	1422	1239	1277	5195
Vehicles Exited	1249	1353	1275	1273	5151
Hourly Exit Rate	4996	5412	5100	5092	5151
Input Volume	15891	18056	15891	15891	16432
\% of Volume	31	30	32	32	31

Intersection: 1:2100 South \& 1200 East, Interval \#1

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	40	3	10	5	103
Average Queue (ft)	20	0	2	1	53
95th Queue (ft)	50	12	24	7	107
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	1				
Queuing Penalty (veh)	4				

Intersection: 1:2100 South \& 1200 East, Interval \#2

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	49	27	67	6	147
Average Queue (ft)	25	5	16	1	79
95th Queue (ft)	55	58	100	10	169
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	2	0			
Queuing Penalty (veh)	9	0			

Intersection: 1:2100 South \& 1200 East, Interval \#3

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	39	15	30	4	125
Average Queue (ft)	18	2	7	1	67
95th Queue (ft)	46	33	58	8	162
Link Distance (ft)		422	422	127	465
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	50				
Storage Blk Time (\%)	0	0			
Queuing Penalty (veh)	2	0			

Intersection: 1:2100 South \& 1200 East, Interval \#4

Movement	EB	EB	WB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	42	6	2	4	102
Average Queue (tt)	19	1	0	1	56
95th Queue (tt)	49	15	6	9	111
Link Distance (tt)		422	127	127	465
Upstream Blk Time (\%)					
Queuing Penalty (veh)					
Storage Bay Dist (tt)	50				
Storage Blk Time (\%)	1				

Intersection: 1:2100 South \& 1200 East, All Intervals

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	T	T	T	TR	LR
Maximum Queue (ft)	58	46	86	2	16	179
Average Queue (ft)	20	2	6	0	1	64
95th Queue (ft)	50	33	58	3	8	142
Link Distance (ft)		422	422	127	127	465
Upstream Blk Time (\%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	50					
Storage Blk Time (\%)	1	0				
Queuing Penalty (veh)	5	0				

Intersection: 2: 2100 South \& Project Access, Interval \#1

Movement	EB	EB	WB	WB	WB	NB
Directions Served	T	TR	L	T	T	LR
Maximum Queue (ft)	11	28	50	8	5	100
Average Queue (ft)	2	6	26	1	1	59
95th Queue (ft)	28	44	57	16	18	120
Link Distance (ft)	127	127		173	173	143
Upstream Blk Time (\%)	0	0				3
Queuing Penalty (veh)	0	2				0
Storage Bay Dist (ft)			50			
Storage Blk Time (\%)			2			

Intersection: 2: 2100 South \& Project Access, Interval \#2

Movement	EB	EB	WB	WB	WB	NB
Directions Served	T	TR	L	T	T	LR
Maximum Queue (ft)	60	84	58	9	5	136
Average Queue (ft)	16	32	33	3	1	83
95th Queue (ft)	83	118	64	35	19	158
Link Distance (ft)	127	127		173	173	143
Upstream Blk Time (\%)	1	2		0		15
Queuing Penalty (veh)	3	15		0		0
Storage Bay Dist (ft)			50			
Storage Blk Time (\%)			4			
Queuing Penalty (veh)			19			

Intersection: 2: 2100 South \& Project Access, Interval \#3

Movement	EB	EB	WB	WB	WB	NB
Directions Served	T	TR	L	T	T	LR
Maximum Queue (ft)	30	54	53	9	1	124
Average Queue (ft)	7	17	30	2	0	70
95th Queue (ft)	47	82	60	22	3	145
Link Distance (ft)	127	127		173	173	143
Upstream Blk Time (\%)	0	1				9
Queuing Penalty (veh)	0	7				0
Storage Bay Dist (ft)			50			
Storage Blk Time (\%)			3	0		
Queuing Penalty (veh)			11	0		

Intersection: 2: 2100 South \& Project Access, Interval \#4

Movement	EB	EB	WB	WB	NB
Directions Served	T	TR	L	T	LR
Maximum Queue (ft)	5	20	48	4	97
Average Queue (ft)	1	3	26	1	56
95th Queue (ft)	15	30	57	12	110
Link Distance (ft)	127	127		173	143
Upstream Blk Time (\%)	0	0			2
Queuing Penalty (veh)	0	1			0
Storage Bay Dist (ft)			50		
Storage Blk Time (\%)			2		
Queuing Penalty (veh)			6		

Intersection: 2: 2100 South \& Project Access, All Intervals

Movement	EB	EB	WB	WB	WB	NB
Directions Served	T	TR	L	T	T	LR
Maximum Queue (ft)	79	108	67	27	11	154
Average Queue (ft)	6	15	29	1	0	67
95th Queue (ft)	49	76	60	23	13	136
Link Distance (ft)	127	127		173	173	143
Upstream Blk Time (\%)	0	1		0		7
Queuing Penalty (veh)	1	6		0		0
Storage Bay Dist (ft)			50			
Storage Blk Time (\%)			3	0		
Queuing Penalty (veh)			11	0		

Intersection: 3: 2100 South \& Douglas Street, Interval \#1

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	32	58	103	55
Average Queue (ft)	9	13	31	28
95th Queue (ft)	33	76	121	74
Link Distance (ft)		173	173	432
Upstream Blk Time (\%)		0	1	
Queuing Penalty (veh)		1	4	
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	0	1		
Queuing Penalty (veh)	1	0		

Intersection: 3: 2100 South \& Douglas Street, Interval \#2

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	T	T	T	TR	LR
Maximum Queue (ft)	31	138	166	3	3	61
Average Queue (ft)	11	53	90	0	0	29
95th Queue (ft)	36	165	221	12	10	68
Link Distance (ft)		173	173	324	324	432
Upstream Blk Time (\%)		2	6			
Queuing Penalty (veh)		10	40			
Storage Bay Dist (ft)	50					
Storage Blk Time (\%)	0	6				
Queuing Penalty (veh)	2	1				

Intersection: 3: 2100 South \& Douglas Street, Interval \#3

Movement	EB	EB	EB	WB	SB
Directions Served	L	T	T	TR	LR
Maximum Queue (ft)	30	106	143	1	62
Average Queue (tt)	9	36	61	0	35
95th Queue (tt)	34	136	181	4	102
Link Distance (tt)		173	173	324	432
Upstream Blk Time (\%)		1	3		
Queuing Penalty (veh)		3	16		
Storage Bay Dist (tt)	50				
Storage Blk Time (\%)	0	3			
Queuing Penalty (veh)	1	1			

Intersection: 3: 2100 South \& Douglas Street, Interval \#4

Movement	EB	EB	EB	SB
Directions Served	L	T	T	LR
Maximum Queue (ft)	32	56	107	48
Average Queue (ft)	8	10	27	25
95th Queue (ft)	33	64	108	59
Link Distance (ft)		173	173	432
Upstream Blk Time (\%)		0	0	
Queuing Penalty (veh)		0	2	
Storage Bay Dist (ft)	50			
Storage Blk Time (\%)	0	0		
Queuing Penalty (veh)	1	0		

Intersection: 3: 2100 South \& Douglas Street, All Intervals

Movement	EB	EB	EB	WB	WB	SB
Directions Served	L	T	T	T	TR	LR
Maximum Queue (ft)	43	164	182	3	4	89
Average Queue (ft)	9	28	52	0	0	29
95th Queue (ft)	34	119	168	6	5	78
Link Distance (ft)		173	173	324	324	432
Upstream Blk Time (\%)		1	3			
Queuing Penalty (veh)		4	16			
Storage Bay Dist (ft)	50					
Storage Blk Time (\%)	0	3				
Queuing Penalty (veh)	1	1				

Intersection: 4: 2100 South \& 1300 East, Interval \#1

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	179	314	331	195	289	306	233	255	257	257	289
R											
Average Queue (ft)	113	236	278	179	217	231	163	182	172	170	191
95th Queue (ft)	207	342	373	229	342	367	297	291	283	263	299
212											
Link Distance (ft)		324	324				768	768		749	749
Upstream Blk Time (\%)		1	5				0	0		749	
Queuing Penalty (veh)		8	30				0	0		0	
Storage Bay Dist (ft)	115			115	310	310			220		0
Storage Blk Time (\%)	19	28	34	29	4	5	0		7	3	
Queuing Penalty (veh)	52	35	144	80	10	13	0		29	6	

Intersection: 4: 2100 South \& 1300 East, Interval \#1

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	121	399	414
Average Queue (ft)	56	305	319
95th Queue (ft)	123	458	466
Link Distance (ft)		474	474
Upstream Blk Time (\%)		1	2
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	7	57	
Queuing Penalty (veh)	27	37	

Intersection: 4: 2100 South \& 1300 East, Interval \#2

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	TR	L	T	T	R
Maximum Queue (ft)	186	330	341	195	409	495	559	434	378	341	356	283
Average Queue (ft)	147	266	306	184	329	378	316	237	275	232	240	142
95th Queue (ft)	223	385	393	232	507	620	729	486	458	426	404	279
Link Distance (ft)		324	324				768	768		749	749	749
Upstream Blk Time (\%)		8	17				6	0	0	0		
Queuing Penalty (veh)		49	109				0	0		0	0	
Storage Bay Dist (ft)	115			115	310	310			220			
Storage Blk Time (\%)	34	35	42	44	38	41	0		37	5		
Queuing Penalty (veh)	108	51	201	141	109	120	1		169	13		

Intersection: 4: 2100 South \& 1300 East, Interval \#2

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	115	490	490
Average Queue (ft)	55	434	440
95th Queue (ft)	122	560	558
Link Distance (ft)		474	474
Upstream Blk Time (\%)		22	24
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	8	64	
Queuing Penalty (veh)	33	47	

Intersection: 4: 2100 South \& 1300 East, Interval \#3

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	186	325	336	195	432	536	627	584	372	364	370
R											
Average Queue (ft)	133	252	287	185	409	504	529	358	281	231	233
95th Queue (ft)	226	366	391	219	508	680	1007	768	494	493	447
Link Distance (ft)		324	324				768	768		749	749
Upstream Blk Time (\%)		4	11				18	0		1	0
Queuing Penalty (veh)		24	61				0	0		0	0
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	29	29	35	38	63	67	0		41	4	
Queuing Penalty (veh)	80	38	151	107	161	171	1		164	9	

Intersection: 4: 2100 South \& 1300 East, Interval \#3

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	124	489	496
Average Queue (ft)	61	442	447
95th Queue (ft)	136	581	581
Link Distance (ft)		474	474
Upstream Blk Time (\%)		36	39
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	11	68	
Queuing Penalty (veh)	42	44	

Intersection: 4: 2100 South \& 1300 East, Interval \#4

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB
NB											
Directions Served	L	T	T	R	L	L	T	TR	L	T	T
Maximum Queue (ft)	189	317	331	195	432	545	666	608	334	307	307
R											
Average Queue (ft)	127	217	261	174	401	500	556	321	236	221	224
95th Queue (ft)	213	338	383	238	527	709	1044	722	443	460	420
(ft)		324	324				768	768		749	749
ink Distance	749										
Upstream Blk Time (\%)		1	5				21	0		1	0
Queuing Penalty (veh)		5	27				0	0		0	0
Storage Bay Dist (ft)	115			115	310	310			220		
Storage Blk Time (\%)	24	29	36	32	65	68	0		27	3	
Queuing Penalty (veh)	67	37	152	89	166	174	2		107	8	

Intersection: 4: 2100 South \& 1300 East, Interval \#4

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	129	472	475
Average Queue (ft)	57	423	429
95th Queue (ft)	127	560	556
Link Distance (ft)		474	474
Upstream Blk Time (\%)		22	24
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	9	62	
Queuing Penalty (veh)	33	40	

Intersection: 4: 2100 South \& 1300 East, All Intervals

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	T	R	L	L	T	TR	L	T	T	R
Maximum Queue (ft)	194	342	345	195	437	558	707	661	421	424	437	333
Average Queue (ft)	130	243	283	181	339	403	391	274	241	214	222	121
95th Queue (ft)	220	362	389	231	524	671	875	612	438	425	400	239
Link Distance (ft)		324	324				768	768		749	749	749
Upstream Blk Time (\%)		4	10				11	0		1	0	
Queuing Penalty (veh)		22	57				0	0		0	0	
Storage Bay Dist (ft)	115			115	310	310			220			
Storage Blk Time (\%)	26	30	37	36	42	45	0		28	4		
Queuing Penalty (veh)	77	40	162	104	111	119	1		117	9		

Intersection: 4: 2100 South \& 1300 East, All Intervals

Movement	SB	SB	SB
Directions Served	L	T	TR
Maximum Queue (ft)	149	499	502
Average Queue (ft)	57	401	409
95th Queue (ft)	127	568	566
Link Distance (ft)		474	474
Upstream Blk Time (\%)		20	22
Queuing Penalty (veh)		0	0
Storage Bay Dist (ft)	60		
Storage Blk Time (\%)	8	63	
Queuing Penalty (veh)	34	42	

Network Summary

Network wide Queuing Penalty, Interval \#1: 489
Network wide Queuing Penalty, Interval \#2: 1249
Network wide Queuing Penalty, Interval \#3: 1093
Network wide Queuing Penalty, Interval \#4: 920
Network wide Queuing Penalty, All Intervals: 938

HALES(h)ENGINEERING innovative transportation solutions

APPENDIX C Site Plan

HALES(h)ENGINEERING innovative transportation solutions

APPENDIX D

Figures

Figure 1

Figure 2

\square

Figure 3

HALES (h)ENGINEERING innovative transportation solutions

APPENDIX E $95^{\text {th }}$ Percentile Queue Lengths

SimTraffic Queueing Report
Project: SLC - Chick-fil-A TIS
Time Period: PM Peak Hour
$95^{\text {th }}$ Percentile Queue Length (feet)

HALES (1)ENGINEERING

 innovalive transportation solutiensProject \#: UT10-213

Intersection	Time Period	EB				NB				SB				WB		
		L	R	T	TR	L	LR	R	T	L	LR	T	TR	L	T	TR
2100 South \& 1200 East	Existing 2010 Background	49	--	68	--	--	--	--	--	--	276	--	--	--	--	10
2100 South \& 1300 East	Existing 2010 Background	212	235	377	--	315	--	213	310	121	--	580	575	597	823	567
2100 South \& Douglas Street	Existing 2010 Background	31	--	136	--	--	--	--	--	--	77	--	--	--	--	4
2100 South \& Project Access	Existing 2010 Backgrounc	--	--	41	92	--	62	--	--	--	--	--	--	37	--	--

SimTraffic Queueing Report
Project: SLC - Chick-fil-A TIS
Time Period: PM Peak Hour
$95^{\text {th }}$ Percentile Queue Length (feet)

HALES (1)ENGINEERING

 innowative transportation solutionsProject \#: UT10-213

Intersection	Time Period	EB				NB				SB				WB		
		L	R	T	TR	L	LR	R	T	L	LR	T	TR	L	T	TR
2100 South \& 1200 East	Existing 2010 Plus Project	50	--	46	--	--	--	--	--	--	142	--	--	--	3	8
2100 South \& 1300 East	Existing 2010 Plus Project	220	231	376	--	438	--	239	413	127	--	568	566	598	875	612
2100 South \& Douglas Street	Existing 2010 Plus Project	34	--	144	--	--	--	--	--	--	78	--	--	--	6	5
2100 South \& Project Access	Existing 2010 Plus Projec	--	--	49	76	--	136	--	--	--	--	--	--	60	18	--

APPENDIX: BUSINESS DISTRICT DESIGN GUIDELINE HANDBOOK

PURPOSE AND INTENT

These Design Guidelines apply to the Sugar House Business District Zoning District. Their purpose is to assure high quality development. The high quality of the district should be reflected in all of its aspects, including design, construction and tenant mix.

The intent of these Design Guidelines is to give general design guidance with flexibility to the development of the area. They are not intended to restrict creativity or to dictate design solutions. Guidelines are intended to support and expand on the guidelines established in the Urban Design Element. They are also intended to be compatible with Salt Lake City zoning ordinances. In the development of design proposals, developers are encouraged to explore solutions and to present alternatives to these guidelines if they can be shown to achieve the same goals for high quality development.

Pedestrian/Bicycle System Design Guidelines

Pedestrian and bicycle access through the development and to surrounding areas and uses are critical to integrating the Sugar House community. It is important to develop a full range of pedestrian options with connections to adjacent uses, amenities and developments. Clearly defined, safe and pleasant pedestrian access through and between all of the use areas on the project should be provided. High traffic areas such as those between parking lots and building entrances, between buildings within the project, and other areas where the majority of pedestrians will be walking, should be a priority.

- Design the town center with pedestrian-oriented corridors providing pedestrian comfort and amenities.
- Provide proper separation of pedestrian and vehicular movement at a scale that encourages activity and pedestrian comfort.
- Form pedestrian/commercial promenades with planting and paving treatments in pedestrian corridors, coupled with active uses in adjacent buildings.
- Incorporate special pavement treatment using materials and patterns coordinated for the district into pedestrian-activity areas.
- Provide pedestrian circulation from buildings adjacent to pedestrian corridors.
- Develop pedestrian corridors to connect activity centers and connect blocks.
- Provide clear, visible signage for pedestrian accessways.
- Orient public entrances to the street. Functional entrances every 30 linear feet is desirable.
- Require continuous street frontages except for driveways, plazas and walkways that allow the pedestrian to get to parking located behind buildings.
- Provide a refuge for pedestrians with overhead protection at doorways on new buildings along 2100 South and Highland Drive/1100 South.
- Articulate pedestrian/bicycle corridors and linkages with pedestrian scale furnishings, lighting, paving materials, public art, trees, and other plantings where appropriate.
- Accommodate the needs of disabled and elderly people by meeting requirements of the American's With Disabilities Act (ADA) along pedestrian areas.
- Provide adequate width along walkways to facilitate pedestrian movement: major pedestrian walkways in high traffic areas should be a minimum of 8 feet' in width; secondary walkways in low traffic areas should be a minimum of 6 feet in width; and walkways adjacent to parking lots where automobile bumpers may overhang the walk should be designed to allow a minimum of 6 feet clearance for walking.
- Delineate space with paving materials and design to help define pedestrian areas from other circulation systems.
- Use easily maintained, durable, slip resistant paving materials suitable for this climate, such as concrete, concrete pavers, brick pavers, tile, etc.
- Avoid the use of rough or uneven paving materials which can be hazardous, particularly for elderly persons and persons in wheelchairs.
- Design drainage grates to allow safe passage by bicycles and pedestrians, particularly in pedestrian/bicycle circulation areas.

Vehicular Circulation and Parking Design Guidelines

- Encourage on-street parking in front of buildings as a traffic calming method and as a buffer for pedestrians.
- Incorporate structured parking in new structures or adaptive reuse of existing structures and coordinate the parking with building and landscaping designs. Parking structures should not occupy the street frontage of 1100 East/Highland Drive and 2100 South. Parking structures on other streets should have retail/office use on the ground level.
- Designate parking lots and structures with uniform identification signs.
- Encourage through-block parking lots along the north side of 2100 South behind the building frontages and adequately buffered from adjoining residential areas. Encourage shared/coordinated parking with all businesses.
- Avoid access to parking through residential areas.
- Provide islands throughout parking areas to break up hard-surfaced areas. Berms and other changes of grade are recommended where possible.
- Encourage shared parking and structured parking, either below grade or above grade.
- Design primary access points to avoid traffic conflicts. Wherever possible, they should be located directly across from existing access drives and streets. Interior circulation drives should be articulated and reinforced with other site design features such as lighting standards, trees and other plantings, special paving and walkways, etc. An interior circulation system which includes a clearly defined route to parking areas is necessary. Immediate entry to large parking areas is not desirable.
- Design access points to adequately meet traffic needs with consideration for consolidation to minimize the number of curb cuts along the block face.
- Design interior drives and parking lots so that pedestrian, service, and vehicular conflicts are minimized.
- Design the vehicular circulation system to reduce traffic impacts to neighboring residential uses.
- Locate parking lots back from buildings to allow for pedestrian space and landscaping.
- Landscape parking lots. Interior islands, at least 6 ' in width between parking rows or bays can be used to minimize the visual impact of large expanses of asphalt and to control cross traffic through parking lots.
- Screen service, storage and trash areas. These areas should be screened and buffered from pedestrian corridors, surrounding streets, residential units, Parleys Creek open space and other public use areas using materials compatible with the architecture and adjacent site features.

Town Center Scale Mixed Use - Parking

- Allow surface and structured parking; however, structured parking is highly recommended.
- Prohibit parking lots to front onto Highland Drive or 2100 South in the area of the Town Center Overlay.
- Require parking structures that face onto the street to have retail spaces at the lower level.

Neighborhood Scale Mixed Use - Parking

- Allow surface and structured parking. Structured parking facing onto the street must have retail space at the lower level.
- Setback parking lots a minimum of 15 feet.
- Locate parking lots to the rear of buildings.

Residential - Parking

- Allow surface and structured parking; however, structured parking is preferred.
- Prohibit parking lots to front onto 2100 South.
- Setback parking lots a minimum of 15 feet.

Open Space - Parking

- Avoid parking lots in Open Space areas.

Building Architecture and Siting

- Require the general pattern of buildings to include and emphasize the importance of public gathering spaces and pedestrian connections.
- Consider the relationship of building forms to one another and to other elements of the Sugar House area so the effects will be complimentary and harmonious.
- Relate the mass and height of new buildings to the historical scale of Sugar House development to avoid an overwhelming or dominating appearance in new construction.
- Treat building height, scale, and character as significant features of the Business District's image.
- Ensure that features of building design such as color, detail, materials, and scale are responsive to district character, neighboring buildings, and the pedestrian.
- Require buildings situated in visually dominant positions to have interestingly detailed exteriors. Prohibit blank-walled facades.
- Allow buildings within the core of the town center to stand out prominently only in exceptional circumstances. This would be when they signify the presence of activity centers and occupy focal points.
- Design new construction to complement and enhance the character of adjacent older buildings having architectural merit through appropriate scale, massing, rhythm, and materials.
- Require where applicable, that the base of the building emphasize horizontal divisions texture, and other architectural details to relate to pedestrian activity.
- Require the first floors of buildings to have clear, untinted glass that permits pedestrian contact with interior spaces along streets and pedestrian corridors. Prohibit dark-tinted or reflective glass windows, creating a blank, impersonal street front, uninviting to the pedestrian.
- Preserve historic structures and their facades in order to preserve the historical fabric of the area, wherever feasible.
- Complement the historic architecture of Sugar House with appropriate exterior building materials. Appropriate materials may include the following:
o Brick;
o Architectural concrete (precast or poured-in-place);
o Stone; and
o Glass.
- Choose exterior building materials to be consistent with appropriate standards for structures of the kind proposed; and address durability and life-cycle cost issue.
- Coordinate and compliment exterior materials throughout the area in order to develop a unified expression.
- Avoid placing mechanical equipment at grade level. Meters, pipes, stacks, heating and cooling equipment, control boxes, and antennas are examples of mechanical equipment requiring careful location and screening treatment.
- Roof top mechanical equipment should be screened with architecturally integrated elements of the building.
- Orient large buildings to minimize shadows falling on public open spaces. The height and mass of tall, closely packed buildings should be shaped to permit sunlight to reach open spaces.
- Require large buildings and groups of buildings to maximize public views of the city's mountain backdrop. In larger projects, view corridors are needed to maintain a sense of living adjacent to the Wasatch Mountains.
- Use sculpture, fountains, and monuments to enhance the three-dimensional quality of pedestrian gathering spaces.
- Require loading docks on the "backside" of buildings to be carefully designed and screened.
- Require the massing and scale of structures to be compatible with surrounding uses.
- Orient buildings that are adjacent to the street, towards the street and promote a high quality image for each project.
- Orient interior buildings towards each other and arrange them in clusters or in adjoining structures whenever possible.
- Contain outdoor garden centers and other seasonal materials in permanently designated areas that are designed as part of the overall structure.
- Include a variety of building heights in the mixed-use area and take advantage of topographic changes, "stepping" the buildings down the profile.
- Avoid construction of a "wall of buildings" along 1300 East blocking views to the west from Sugar House Park.
- Avoid facade architecture: all faces of the building should be designed with similar detail and materials.

Landscape Design Guidelines

- Coordinate landscape design, incorporating landscaped treatment for open space, roads, paths, buildings and parking areas into a continuous and integrated design.
- Include primary landscape treatment that consists of shrubs, ground covers and shade trees appropriate to the character of the project, the site and climatic conditions.
- Provide a variety of plantings that include changes in color, texture, height, density, light, ground plane, etc. A mixture of shrubs, trees, ground covers, perennials, turf and annuals is suggested.
- Provide landscaped separations between parking, drives, and service areas, and public use areas including walkways, plazas, eating areas, view corridors, prime vehicular access points, etc. Architectural materials may be used, but plant materials should also be incorporated in the screening/buffering treatments.
- Provide raised planters in high use areas when appropriate. Raised planters offer a good solution that protects plant materials from damage, and they offer opportunities for seating as well.
- Provide trees planted on grade with a minimum opening of 5 ' square or round. Openings may be covered with tree grates or other material that allows air to reach the soil within the 5' area.
- Group plantings in larger planting areas rather than individual trees in grates, wherever possible. Plants are more successful in groupings and in larger planting areas.
- Minimum plant sizes for all landscaped areas are as follows

Deciduous trees	2 1/2" caliper
Evergreen trees	6 ' in height
Deciduous shrubs	5 gallon container
Evergreen shrubs	$24^{\prime \prime}-36^{\prime \prime}$ in height or spread
Perennials	1 gallon container Ground covers

On-site Lighting Design Guidelines

- Design lighting as a system that is integrated throughout the development, and that is compatible with the other lighting in the area.
- Use pedestrian lighting along walkways, plazas, and other pedestrian areas to indicate routes and to provide safety. Fixture design should be appropriate and coordinated through the entire development.
- Use lighting to highlight building facades. Generally, all building facades should be lighted at the street level. Above the first floor, light should be selectively positioned or defined. A more limited lighting pattern in the higher areas of the building is intended to produce greater contrast of light and shadow, accenting unique features without lighting the entire structure.
- Use lighting to accent and highlight planting. Appropriate light levels and pleasant accent effects can be achieved with accent lighting, directed upwards into trees, provides low intensity, but offers dramatic illumination of nearby pedestrian areas.
- Reserve architectural lighting for individual plaza areas to emphasize focal points.
- Require parking lot lighting to meet Salt Lake City standards, at a minimum.
- Design appropriate lighting levels to provide a safe atmosphere while deterring undesirable activities and avoiding night-sky pollution.

Streetscape

The pattern and design of streetscapes should convey a significant message
complimenting the type and intensity of land development. A streetscape design should unify a district or neighborhood and portray an identity through the design. The following streetscape guidelines are recommended for the Town Center:

- Design buildings to shape the street; the general pattern of buildings should help to define street areas and other public open spaces.
- Allow for informal events such as displays and outdoor dining to encourage pedestrian activity.
- Incorporate a consistent theme for streetscape design to strengthen the association of unrelated buildings.
- Select and design street landscaping according to a special theme for a given area to provide a sense of place in addition to its other amenities.
- Maintain and incorporate a regular-interval street lighting pattern into streetscape improvements.
- Choose light poles, arms, and fixture designs to preserve the historic character of the streetscape.
- Select lighting to be in scale with the pedestrian experience.

Signage

Since adoption of the 1985 Sugar House Master Plan, the quality of signs in the Business District has improved. The City's beautification project improved the area, along with the City Redevelopment Agency’s façade improvement program. Nevertheless, strict adherence to the City's sign ordinance is necessary to ensure that new signs do not dominate the streetscape of the urban area. This ordinance does not allow new billboards and assumes a long-term decrease in their number over time. As part of all planned developments, the policies of the City's Urban Design Element relating to signage should be followed. In addition, planned developments must adhere to the following guidelines:

- Install signage that emphasizes design elements of a building's façade.
- Select sign materials made of high quality, durable materials that will continue to look good after several years in Salt Lake’s climatic conditions.
- Discourage pole signs and encourage wall and blade signs, as well as monument signs consistent with a pedestrian scale.
- Provide street signs and other informational signage that are uniform and that provide neighborhood and community identity.
- Integrate signs or awnings into the architectural design of any building rather than a feature independent and in conflict with the building's architecture.
- Design signs and graphics to present their message with clarity; graphics should be clear and easily understood, so that people can orient themselves within the development and locate businesses and facilities easily.
- Locate and size signs so that views to and from adjoining land parcels will not be blocked.
- Design directional signing to be low, visible, integrated with the rest of the graphic systems, and functional. If directional signing is needed on the street directing people and vehicles, and on the interior of any development project, it should be consistently located in order to maximize its directional function.
- Design informational signing that helps orient people on the development. It may take the form of a directory or other project wide identification in which people can orient themselves and be directed to those activities and areas they wish to visit.

Off-Site Development Design Guidelines

Off-site development includes work that occurs in the public way and on properties otherwise considered public such as the Parleys Creek property owned by Salt Lake City and any others that may be designated or assigned.

- Provide public sidewalks and pedestrian/bike corridors that enhance the existing pedestrian circulation systems in the following locations:
o To the east along 2100 South and along Wilmington Avenue to Sugar House Park;
o Between the Sugar House Plaza Monument area and surrounding uses and areas;
o Between the pubic open space at Parleys Creek and surrounding uses and areas;
o Along the rail/trail designated in the Salt Lake City Open Space Plan; and o To south and west to Fairmont Park.
- Accommodate public transportation at the street edges. Coordinate with the Utah Transit Authority on location and design of turnouts, bus stops and other transit facilities.
- Provide standard paving materials currently used in the area on sidewalks. Modifications to the patterns may be permitted and will require approval by Salt Lake City.
- Landscape park strips and public open space with street trees, shrubs, ground covers and lawn. Maintenance of park strips is the responsibility of the adjacent property owner.
- Select trees with guidance from the Salt Lake City Urban Forester.
- Preserve and maintain existing vegetation along Parleys Creek.
- Design street and circulation system drainage grates to allow safe passage by bicycles.
- Require light fixtures to meet Salt Lake City standards and specifications and be of a design that is compatible with the design theme of the business district.
- Include elements of visual interest and complexity into publicly owned open space. These elements can include landscaping, seating areas, furnishings, fountains, changes in grade, public art, etc. to add interest and excitement to the public spaces between buildings and along major circulation corridors.
- Incorporate into the design and provide in designated locations of outdoor open space and public space elements such as site furnishings such as drinking fountains, benches, trash receptacles and ash receptacles, telephones, newspaper stands, bicycle storage.

They should be coordinated and compatible to other site furnishings and design elements.

- Design a mixture of seating opportunities if seating is provided. Materials that are comfortable and vandal resistant are preferred.
- Consider seatwalls, steps, fountain edges, grassy mounds, etc. for an attractive variety of seating options that can accommodate many different needs. If seatwalls are used they should be a minimum of 12 " wide and 16 " to 24 " high for comfortable, flexible seating.

Chick-fil-A/Homestead Village Summary of Sugar House Design Guideline Compliance "Exhibit B"

The subject building is not listed on the Historic Structure-Significant, Notable, or Structure-Associated buildings list. The existing Lone Star Steak House was constructed after 1962.

The intent of the Design Guidelines is to give general design guidance with flexibility to the development of the Sugar House Business District. They are not intended to restrict creativity or to dictate design solutions. Guidelines are intended to be compatible with the Salt Lake City zoning ordinances.

Developers are encouraged to explore solutions and to present alternatives to the guidelines if they can be shown to achieve the same goals for high quality development.

Pedestrian/Bicycle System Design Guidelines

"Pedestrian and bicycle access through the development and to surrounding areas and uses are critical to integrating the Sugar House community.

- A large porte cochere has been added to create a strong street presence as well as screen the drive-thru fronting the street.
- Careful attention has been paid to create obvious pedestrian paths from the public sidewalk to the building entrance.
- Special decorative pavement treatment of the pedestrian pathway from the street to the restaurant entry is proposed.
- An existing 9 ft easement/pedestrian corridor on the west side of the building remains as a vital access from the street to the open space area to the South as well as the Homestead Village hotel.
- Clear signage will be installed to identify the pedestrian pathway, with additional signage proposed to warn drivers of pedestrian activity.
- The patios front the street to create an inviting area for pedestrians.
- The parking lot will remain in its current location, on the east side of the building. No parking is proposed between the building and the street.
- Awnings at the windows and entry provide overhead protection
- The project is ADA accessible
- All pedestrian walkways are a minimum 8 feet wide, with secondary walkways 6 feet clear (including any 2 foot overhangs)
- The pedestrian path is delineated by decorative paving, consisting of durable, easily maintained paving materials.
- No rough or uneven paving is proposed
- There are no ground mounted drainage grates

Vehicular Circulation and Parking Design Guidelines

The Circulation and Parking layout has been designed to meet the goals of the Design Guidelines in the following manner:

- Parking is proposed in its existing location. No on-street parking is allowed in front of the property
- Proper directional signage is provided.
- Shared parking with the hotel is provided
- There is no adjacent residential property impacted by the parking, access, or circulation of the project.
- The existing project access will not be modified.
- Pedestrian pathways are provided around the building connecting the street, the patio areas and the main entry.
- Landscape planters are provided to soften the parking area.
- The project will utilize the existing access point on the east side of the parcel.
- Service and trash areas have been screened with landscaping and oriented for minimal visual impact. Neither is visible from the street.

Building Architecture and Siting

Building design and site layout have been carefully considered to meet the goals of the Design Guidelines and have incorporated the following features:

- The building has been oriented towards the street with minimal setback to create a strong street presence and a high quality image.
- Two pedestrian crosswalks have been provided to connect to the public sidewalk and building entry.
- The building design includes appropriate massing, varying colors and materials, and articulation in keeping with the historic nature of the neighborhood. The use of stacked stone and glass dominate the street front elevation and main entry.
- Patio seating and landscaping have been provided along the building frontage to create a welcoming atmosphere for pedestrians.
- Ground level equipment has been placed to minimize visual impact and screened with landscaping. Roof mounted equipment will be screened by parapets.

Landscape Design Guidelines

A high quality landscaping design is proposed that exceeds the minimum requirements.

- 12% of the parking area is landscaped (5% is required).
- Existing trees will be protected in place while 14 new trees will be provided. 13 trees are required, 38 will be provided.
- 46 shrubs are required, 104 are provided.
- Particular consideration was given to the landscaping along the street frontage to create a welcoming, pedestrian friendly street statement.
- A raised flower bed is proposed at the NEC of the building to accent the patio area.

On-Site Lighting Design Guidelines

- Existing lot lighting meets Salt Lake City standards.
- New building and site lighting will be designed to highlight pedestrian pathways, and building focal points without creating a glare on adjacent properties.

Streetscape

- The building design, site layout and landscaping have been designed to create a strong, pedestrian friendly street presence along the frontage.
- The building has a prominent façade fronting 2100 South.
- Outdoor patio dining is provided to encourage pedestrian activity.
- Existing mature street landscaping will remain

Signaqe

The proposed signage is in conformance with the Zoning Code and Design Guidelines.

- Wall signs complement the building façade, with clear identification of the restaurant.
- Durable materials are used.
- A pedestrian scaled monument sign is proposed. The sign incorporates a quality stacked stone base to integrate into the building and site design.
- Appropriate directional signage is included in the sign program.

Off-Site Development Guidelines

There are no off-site improvements associated with the project.

